Excitotoxicity and inflammation play crucial roles in the etiopathogenesis of perinatal brain injury. We have shown that the sigma-1 receptor agonist 2-(4-morpholinethyl)-1-phenylcyclohexanecarboxylate (PRE-084) protects against N-methyl-d-aspartate (NMDA) receptor-mediated excitotoxic brain injury. In models of adult central nervous system pathology, PRE-084 has demonstrated potent anti-inflammatory properties, which makes it a promising candidate for countering inflammation-enhanced perinatal brain injury.

In the present study we evaluated the effect of PRE-084 in a neonatal mouse model of inflammation-sensitized excitotoxic brain injury.

From postnatal days 1 to 4, pups were pre-sensitized by intraperitoneal injection of IL-1beta (10ng). Two hours after the last IL-1beta dose, pups received an intracranial ibotenate injection, 1 hour after the insult they were randomly treated with i) 0.1 µg/g bodyweight PRE-084 or ii) vehicle.

Administration of PRE-084 resulted in a significant decrease in cortical grey (mean length of the lesion: vehicle 780.00µm ± 495.35 vs. PRE-084 433.33µm±116.51; n=8–9, p<0.05) and adjacent white matter damage (mean length of the lesion: vehicle 767.50µm ± 489.07 vs. PRE-084 391.11µm±126.14; n=8–9, p<0.05). No sex-specific differences in lesion size were detected (n=5–6, p>0.05). PRE-084 treatment significantly reduced the number of isocitrat B4-positive activated microglial cells in perilesional white matter (mean number of isocitrat B4-positive activated microglia vehicle 36.40±6.96 vs. PRE-084 19.93±11.99; n=5; p<0.05).

We are the first to report that PRE-084 reduces inflammation-sensitized NMDAR-mediated excitotoxic perinatal brain damage. Since sigma-1 receptor agonists are investigated in clinical trials in adult neurological diseases, they might be considered a promising therapeutic option also in perinatal brain injury.

The mammalian target of rapamycin (mTOR) exerts neuroprotective effects under hypoxic or ischemic conditions. To explore whether mTOR participates in neuroprotective signaling through regulation of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and neuronal apoptosis in developing rat brain with hypoxia-ischemia (HI), we operated on postnatal day 10 rats by ligating the common carotid artery followed by exposure to systemic hypoxia. Brains were collected at various intervals to detect the expression of mTOR, phosphorylated mTOR (p-mTOR), HIF-1α, VEGF and cleaved caspase 3 (CC3), using immunohistochemistry and Western blot analysis. We also used terminal deoxyuridineyl transferase-mediated dUTP-nick end labeling (TUNEL) to detect neuronal apoptosis. The p-mTOR protein expression increased at 2 h after HI, peaked at 8 h, lasted 24 h, and then dropped to the basal level. Also, the expression of HIF-1α and VEGF was significantly enhanced and peaked at 8 h after HI. Up-regulated expression of CC3 was observed at 2 h, peaked at 24 h, and lasted 72 h after HI. Increased neuronal apoptosis is associated with reduced HIF-1α and VEGF expression. Furthermore, pretreatment with rapamycin, a mTOR specific inhibitor, significantly inhibited HIF-1α and VEGF protein after HI. The expression of CC3 and the number of TUNEL-positive cells were up-regulated at 8 h and down-regulated at 24 h after HI in the rapamycin-treated group. Our findings suggest that mTOR may participate in the regulation of HIF-1α, VEGF and neuronal apoptosis, serving neuroprotective functions after HI in developing rat brain.

MTOR ACTIVATES HYPOXIA-INDUCTIBLE FACTOR-1α AND INHIBITS NEURONAL APOTOPSIS IN THE DEVELOPING RAT BRAIN DURING THE EARLY PHASE AFTER HYPOXIA-ISCHEMIA

doi:10.1136/archdischild-2012-302724.0010

FLUID THERAPY SHOULD BE GUIDED BY FLUID RESPONSIVENESS

doi:10.1136/archdischild-2012-302724.0011

RESPONSIVENESS FLUID THERAPY SHOULD BE GUIDED BY FLUID RESPONSIVENESS

Abstracts