Consanguinity and family history were positive in almost all of the cases. For means of diagnosis, referral was done for aminoacid profiles, outcome of the cases varied from early neonatal death to normalcy through later childhood.

Conclusion and recommendations The high consanguinity rate in our country makes IEM not uncommon problem. Estimation the overall incidence of IEM in general and UCD in particular is needed. Further studies are needed to explain the higher incidence in Northern Gaza. Lack of metabolic specialist and metabolic laboratory necessitates referral of cases which has many problematic issues. We need to have metabolic specialist and geneticist as well as our own metabolic and genetic lab in Gaza strip.

Background and Aims The perfusion index (PI); is an easy, non-invasive technique for the assessment of peripheral perfusion. The aim of this study was to determine the peripheral PI reference values and PI variability of clinically and hemodynamically stable newborns during the first five days.

Method Pre- (right hand) and postducal (foot) PI values were recorded on the sixth hours, first, second, third and fifth day of 241 newborns life with the new generation pulse oximeter [MASIMO Rad 7 Oximeter, USA].

Results A total of 241 newborns (196 term, 45 preterm) were included in the study. The average gestation age of all newborns was 38.4±2.0 weeks and birth weight was 2002±666 grams. According to the analysis of repeated measurements of term and preterm groups within the first 5 days, PI values of right hand and foot did not vary. However, right hand PI values were significantly higher than foot PI values (p<0.001). During the first 3 days, both the right hand and foot PI median values of term newborns were significantly higher than preterm newborns (p<0.001) whereas on the fifth day, difference was disappeared (right hand; p=0.10, foot; p=0.45).

Conclusion The peripheral perfusion of stable newborns did not vary significantly during the first five days. It was considered, higher PI value of term newborns compared to preterm newborns, is the result of early adaptation in the microvascular blood flow. PI values obtained from stable newborns may be guiding for further studies planned on various diseases associated with impaired perfusion.

Evaluation of Three Resuscitation Protocols in Hypovolemic Shock Using Microcirculation Analysis in an Animal Model

Background and Aims Ideal treatment of hypovolemic shock is not well established yet. Comparison of different treatments usually focuses on global haemodynamics. Our aim was to study if microcirculation analysis shows differences between three different resuscitation treatments.

Methods After sedation, relaxation and mechanical ventilation, hypovolemic shock was induced with controlled bleed (30ml/kg) in 17 two-month-old piglets. After 30 minutes pigs randomly received treatment with either normal saline (NS) 30 ml/kg, Albumin 5% plus Hypertonic 3% Saline (AHS) 15 ml/kg or Albumin 5% plus Hypertonic 3% Saline plus a bolus of Terlipressin 20 μg/kg (TAHS).

Microcirculation was assessed following international consensus recommendations. Perfused vessel density (PVD), microvascular flow index (MFI) and heterogeneity index (HI) where determined at basal, post bleeding and after treatment.

Results After treatment PVD and MFI where higher in AHS and TAHS groups than NS group and HI values were lower, but differences between the three treatment groups were not statistically significant. Median values for PVD were 13.0±0.9 (NS); 14.0±1.8 (AHS) and 14.0±1.9 (TAHS) (p=0.539). MFI median values were 2.47±0.29 (NS); 2.75±0.23 (AHS) and 2.67±0.19 (TAHS) (p=0.204). HI median values were 0.43±0.25 (NS); 0.22±0.20 (AHS) and 0.52±0.21 (TAHS) (p=0.16).

Conclusions After treatment there were no significant differences between the three treatments in none of the three microcirculation parameters. There are no significant differences in microcirculation analysis between several treatments of hypovolemic shock.