Tissue perfusion is the ultimate goal of a functional cardiovascular system and its integrity should remain the essential endeavor of all caregivers in charge of hemodynamically compromised patients. The postoperative cardiac patients are not the exception. Optimization of tissue perfusion after cardiac surgery is multifactorial and should be based upon invasive and non-invasive markers. Physiological elements to be considered and supported with medical therapy include: pre and postload, cardiac contractility, heart rate and rhythm (determining cardiac output), analysis of systemic and pulmonary vascular resistances, evaluation of the systolic but also the diastolic function, and optimization of oxygen content, transport, extraction and consumption. All of the latter are to be managed taking into account elements related to microcirculation, cardiopulmonary and interventricular interactions and the neuro-humoral mechanisms triggered by the shock status. This conference will review decision-making processes, and therapeutic strategies related to general management principles, drugs (inotropic, lusitropic, vasodilator and vasoconstrictor medications), ventilation, and salvage therapies, amongst others.

Background Adrenal dysfunction is associated with increased inotrope requirement and worse clinical outcome in children with sepsis. In children after bypass surgery a very low incidence of adrenal dysfunction is reported. However, use of hydrocortisone has been shown to improve hemodynamics of children requiring catecholamine after cardiac surgery. We aimed to evaluate the adrenal function of this subgroup of children requiring catecholamines after cardiac surgery.

Methods Retrospective analysis of adrenal function testing of children requiring catecholamine after cardiac surgery at the Royal Brompton Hospital from 2006 to 2011. Adrenal function was assessed using a 250µg/1.73m² ACTH stimulation test. Two definitions of adrenal dysfunction were used: physiological (peak cortisol after ACTH stimulation < 500nmol/L) and critical care (difference between cortisol post-stimulation and baseline cortisol < 250nmol/L). Children that received corticosteroids or etomidate, and children with known endocrine dysfunction were excluded.

Results 62 children were included in the study. Median (interquartile range) age was 3.2(0.9–6.5) months and weight 3.9(3.3–7.2)Kg. The mean RACHS was 2.5 ± 0.7 and median catecholamine score 0.11(0.06–0.18). Seven (11.3%) children had adrenal dysfunction according to the physiological definition and 9 (14.5%) according to the critical care definition. Children with physiological adrenal dysfunction had significantly higher catecholamine requirement than children with normal adrenal function (p<0.01). There was no difference in catecholamine requirement in children with normal or abnormal adrenal function according to critical care definition.

Conclusions In children requiring catecholamines after cardiac surgery, adrenal dysfunction according to a physiological definition (but not critical care definition) is associated with higher catecholamine requirement.

Background Cardiovascular dysfunction, a consequence of perinatal asphyxia, contributes significantly to its morbidity and mortality. The use of vasopressin, an endogenous hormone commonly given to adults with refractory shock, in neonates is limited by concerns over mesenteric perfusion. We recently showed that vasopressin had dose-dependent baro-sensitive effects with possible cardioprotection at low doses (0.005–0.01 units/kg/h) in a swine model of neonatal hypoxia-reoxygenation (H-R). We aimed to compare systemic and regional hemodynamic effects of low-dose vasopressin and dobutamine, a synthetic beta-adrenoreceptor agonist.

Methods Piglets (1–5 day-old, 1.6–2.2kg) were anesthetized and instrumented to continuously monitor systemic hemodynamic parameters including cardiac output (CO), and carotid and mesenteric flows indices. After 2h of hypoxia (10–15% O2), piglets had normoxic reoxygenation for 4h. In a blinded randomized fashion, piglets received either vasopressin (0.01 units/kg/h started at 30min of reoxygenation) or dobutamine (20 mcg/kg/min started at 2h of reoxygenation) (n=8/group). H-R controls (placebo) and sham-operated piglets were also performed. Plasma troponin-I levels, tissue lactate levels and histology of left ventricle and small bowel were analyzed.

Results H-R piglets had cardiogenic shock and metabolic acidosis, which recovered upon reoxygenation. During recovery CO, carotid and mesenteric flows gradually deteriorated and were increased similarly in vasopressin- and dobutamine-treated piglets (p<0.05 vs. controls). Troponin, ventricular and intestinal lactate levels were reduced in vasopressin-treated piglets (p<0.05 vs. controls), with no difference in histological analysis among groups.

Conclusion Low-dose vasopressin improves systemic and regional hemodynamics similarly to dobutamine and confers a cardioprotective effect in a swine model of neonatal H-R.

Background and aims Little is known about drugs pharmacokinetics and pharmodynamics in children. Renal and hepatic functions are not mature yet. Many drugs are used “off-label”. So, children are more susceptible to adverse drug events (ADE) than adults. As many drugs are used in pediatric intensive care units (PICU), we expect to find many ADE in this setting. Our aims are to describe ADE found in PICU and identify risk factors for their development.

Methods Six-month prospective cohort of all patients admitted to a single PICU. ADE were identified by active search and classified by Naranjo’s algorithm. Risk factors were identified by multivariate analysis.

Results 240 pediatric admissions occurred and 110 ADE were observed in 84 patients. Median age was 51 months. Only 39 of 240 patients didn’t have chronic status. Principal ADE were hyponatremia, hyperglycemia, hypokalemia. Drugs involved in most ADE were antibiotics, diuretics, antiepileptic, sedatives and analgesics and steroids. Age under 4 years, length of stay in PICU and number of drugs used are risk factors to ADE.

Conclusions There were 64.7 ADE/1000 patients-day in the present study. Hyponatremia, hypokalemia and hyperglycemia are the
commonest ADE found. Age under 4, length of stay in PICU and number of drugs used are risk factors to ADE development.

88 USE OF STATINS IN CHILDREN
doi:10.1136/archdischild-2012-302724.0088

EE Moreno Medinilla, L Ferreras Antolín, F Górriz Fernández-Creuéht, J Blasco Alonso, J Serrano Nieto, V Navas López, A Junado Ortiz, C Sierra Salinas. Hospital Marleno Infantil Carlos Haya, Málaga, Spain

Introduction
Referred to the use of statins for hyperlipemia in children, it is not yet clearly defined who must be treated (recent recommendations focused on older than 8 years) and also the frequency of short and long-term toxicity.

Methods
Retrospective, descriptive study of patients, 10 year-old or younger, under statin treatment, followed in our Unit. Epidemiology, treatment and side-effects data were analyzed.

Results
Twelve children met inclusion criteria; 7/12 female and 11/12 caucasian. Main diagnosis was familiar hypercholesterolemia (10/12); 1/12 hypertriglyceridemia and 1/12 nephrotic syndrome. Positive family history of cardiovascular events: 5/12 (no death among first degree relatives). Mean age at diagnosis was 5.3 years. All of them were asymptomatic. 8/12 had been treated previously (7/12 resins, 1/12 cholesterol absorption inhibitor). Statin treatment starting age was 8.6 years, 4/12 younger than 8 year-old (minimum age: 5.2 years). Atorvastatin used in 10/12, lovastatin 1/12, simvastatin 1/12, initial dose was always 10 mg/day. The average levels before treatment were: LDL 235 mg/dL, total cholesterol 324.7 mg/dL. In one 10 year-old patient (40 mg/day lovastatin) muscular pain was reported with a CPK increase; side-effects stopped once the statin dose was reduced to 20 mg/day. Besides, no adverse effect was reported. The highest dose achieved was 40 mg/day. Patients follow-up varies from 9 months to 4 years.

Conclusions
- It remains unclear whether statins could be started before 8 year-old. From our experience, no adverse effects were found in that group.
- Dose had to be increased to 20–40 mg/day in order to achieve objectives.

89 CLINICAL JUDGEMENT AND PAIN ASSESSMENT IN CRITICALLY ILLCHILDREN
doi:10.1136/archdischild-2012-302724.0089

1AL Thevoz, 2A Gerber, 3AS Ramelet, 1Institute of Higher Education and Nursing Research, University of Lausanne; 2Haute Ecole de la Santé La Source; 3Haute Ecole de Santé Vaud, University of Applied Sciences Western Switzerland, Lausanne, Switzerland

Background and aims
Despite the various pain assessment tools available to date, pain assessment in critically ill children remains challenging for nurses. Clinical judgement of pain depends on different factors that have yet to be described in real-life settings. The aim of this observational study was to describe expert nurses’ clinical judgment when assessing pain in critically ill children.

Methods
Structured interviews. Data were analysed using deductive content analysis. They perform analgesic modification possible cultural variations of pain manifestation may lead to inadequate assessment and treatment of pain.

Results
The ten nurse participants had an average of 12.9 years of nursing experience. Seven intubated and ventilated patients were observed. Four had cardiac surgery, one diaphragmatic hernia, one tracheal reconstruction, and one respiratory syndrome. Results show that pre-encountered data and knowing the patient are important factors. Expert nurses mobilise their knowledge to discriminate between pain-related agitation and agitation caused by other factors by generating hypothesis. They perform analgesic tests to confirm or refute pain. Counter-balancing the benefits and adverse effects of analgesia and sedation is also part of their clinical judgment when making decision about pain management.

Conclusions
The clinical context of the patient plays an important part in nurses’ judgment about pain. To facilitate this difficult task, pain assessment should be combined with sedation assessment in critically ill children.

90 OBSERVATIONAL STUDY ON PAIN AND DISTRESS IN CHINESE AND ITALIAN CHILDREN UNDERGOING VENIPUNCTURE
doi:10.1136/archdischild-2012-302724.0090

F Festini, M Calzolai, S Bisogni, University of Florence, Florence, Italy

Few studies have examined the influence of ethnic-cultural variables on pain perception and behavioural distress in children. Not considering possible cultural variations of pain manifestation may lead to inadequate assessment and treatment of pain.

Goal
To evaluate whether differences exist between Italian and non-Italian children with regards to pain perception and behavioural distress during the same invasive procedure.

Methods
Cross-sectional analytical trial. A group of Italian children (group A) and a group of Chinese children (group B) aged 3 to 11 were observed during a standardized venipuncture for blood sample drawing. Pain was self-rated with a 1–10 Wong faces scale or a 1–10 numeric scale. Behavioural distress was measured with the Observational Behaviour Distress Scale (OBDS, 1–5).

Results
246 children were examined, 191 in group A and 55 in group B. In preschool age (3 to 5, n=76), neither mean pain rates nor mean OBDS rates were statistically different in the two groups. On the opposite, in the 6–11 age (n=170), mean pain rate was 2.9 in group A and 4.8 in group B (Anova p=0.0001) while mean OBDS rate was 6.6 in group A and 2.5 in group B (Anova p=0.0005).

Discussion
Our data show that during venipuncture Chinese children have less marked behavioural distress manifestations than their Italian peers, even though the perceived pain is higher in Chinese children.

91 AUDIT OF PAIN, SEDATION AND WITHDRAWAL PRACTICES IN THE UK, IRELAND AND THE NETHERLANDS
doi:10.1136/archdischild-2012-302724.0091

1J Harris, 2J Bakker, 3J Tume, 4E Ista, Paediatric Intensive Care Society - Nursing Study Group for Pain, Sedation Drug Withdrawal. 1Paediatric Intensive Care, Guy’s & St Thomas’ NHS Foundation Trust, London, UK; 2Paediatric Intensive Care, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; 3Paediatric Intensive Care, Alder Hey Children’s Hospital, Liverpool, UK; 4Erasmus MC - Sophia Childrens Hospital, Rotterdam, The Netherlands

Background and aims
Assessment and management of pain, sedation and drug withdrawal in PICU’s is notoriously difficult. This audit aimed to compare practices across the UK, Ireland (UK&I) and The Netherlands (NL) with regards to pain, sedation and drug withdrawal.

Methods
An electronic questionnaire was sent to all PICU’s listed in the PICANET database in January 2011 and to all PICU’s in The Netherlands. The questionnaire was sent to the lead nurse, lead doctor, educator or research nurse.

Results
Response rate: UK & I was 51% (18/35) and for NL 100% (8/8), respectively.