dysplasia (IED). The patient received parenteral and enteral nutrition with elemental formulas.

Previous reports have suggested that IED may be a congenital inherited autosomal recessive disease. We report a case of congenital enteropathy that represents a diagnostic and therapeutically challenging.

Eosinophilic digestive disease (EDD) includes a broad spectrum of clinical presentations due to eosinophilic inflammation involving anywhere from the esophagus to the rectum. The heterogeneity in the clinical presentations of EDD is determined by the site and depth of eosinophilic infiltration. The sites of inflammation determine the nomenclature for EDD. The most well characterized of these, eosinophilic esophagitis (EE), eosinophilic gastroenteritis (EG), and eosinophilic colitis or enterocolitis. While the depth of eosinophilic infiltration through the three main layers (mucosa, musculara and serosa) determines the prominent clinical manifestation. The recent advances in gastrointestinal endoscopy and the increasing awareness and diagnosis of EDD, in my viewpoint, can be of help to add to our understanding of the heterogeneous clinical syndrome under the broad title bronchial asthma.

Here I present a multidisciplinary comparative analysis to prove that EDD and the allergic bronchial asthma can be regarded as two clinical expressions of one disease in two systems that are functionally different but anatomically and embryologically related.

Prevalence of fat-soluble vitamin deficiencies in children with cystic fibrosis

Method Retrospective analysis of vitamin levels performed in children with cystic fibrosis in Calderdale and Huddersfield NHS Trust.

Results Vitamin A, D, and E levels were checked for a total of 75, 76 and 76 times respectively over a period of six years. Vitamin E levels were normal. Vitamin D levels were sub-optimal (<60nmol/l) on forty occasions and amongst them levels were below 20 nmol/l on three occasions.

Conclusion Sub-optimal Vitamin D levels are still very common in children with cystic fibrosis despite routine vitamin supplementation.

Spreading of nourishment disorders in schoolchildren population

Materials and Methods Study included 3012 children of 6–15 age: 1654 girls and 1358 boys. By means of the questionnaire we studied prevalence of nourishment disorders among schoolchildren population; evaluated peculiarities of clinical course and mathematically evaluated frequency and combinations of risk-factors. Statistical processing was provided by SPSS v.12 software.

Results Our retrospective analysis of nourishment disorders in 3012 children of 6–15 age: 1654 girls and 1358 boys showed that the prevalence of FF³ 9% declined from 34.8% to 8.7% (P = 0.027). Liver echogenicity was associated with ALT at baseline (P = 0.048).

Conclusion Data of our epidemiological studies do not significantly differ from the data of various countries and in our case the contributing factor is Georgian cuisine.

Magnetic resonance imaging versus ultrasonography in assessing changes in fat liver content in obese children after one-year nutritional intervention

Methods Forty-six obese children, aged 6–14 years, underwent metabolic measurements, liver ultrasonography (US) and chemical-shift MRI examinations at baseline and after an one-year nutritional intervention. Biochemistry included serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Liver fat fraction (FF) on MRI was judged elevated as it was 39%.

Results Prevalence of FF³ 9% declined from 34.8% to 8.7% (P = 0.001), with a mean (95%CI) reduction of 7.8 (5.0–10.6%). At baseline, FF was associated with any liver biochemical parameters (maximum P = 0.001). At the end of intervention association was found with AST (P = 0.017). Change of FF was associated with change in AST (P = 0.027) and ALT (P = 0.024). Liver echogenicity was associated with ALT at baseline (P < 0.001). An age and sex adjusted multiple regression analysis showed that FF change was independently associated with change in serum AST (adjusted regression coefficient 0.348, P = 0.048).

Arch Dis Child: first published as 10.1136/archdischild-2012-302724.0708 on 1 October 2012. Downloaded from http://adc.bmj.com/ on September 17, 2023 by guest. Protected by copyright.