Objective To identify perinatal factors associated with multiple large cysts on chest computed tomography (CT) in extremely premature infants with chronic lung disease (CLD).

Methods A case-control study of 87 infants with CLD who were ≤28 weeks' gestation, admitted between 2005 and 2010, and underwent chest CT. CLD was defined as the need for supplemental oxygen at 36 weeks' postmenstrual age (PMA). A chest CT was performed at between 36 and 44 weeks' PMA. Nine infants had multiple large cysts (≥25mm) throughout the lung fields on chest CT (MLC group), and 78 had no or a few localized large cysts on chest CT (controls). Perinatal factors including placental histology was compared between the groups.

Results The incidence of premature rupture of the membranes (PROM) and histological chorioamnionitis (HC) was significantly higher in the MLC group than in controls. Significantly more infants in the MLC group had an elevated level of serum IgM (≥30 mg/dl) at birth than in controls. The severity of respiratory distress syndrome (RDS) was significantly reduced in the MLC group compared with controls.

Conclusions The presence of multiple large cysts on chest CT is associated with an increased incidence of PROM and HC, elevated levels of serum IgM and reduced severity of RDS in extremely premature infants with CLD. These findings suggest that the presence of chronic intrauterine inflammation and the acceleration of fetal lung maturation may play important role in the formation of large cysts in the developing lung.

Background and Aims Bronchopulmonary dysplasia is one of the most important diseases affecting premature babies. We aimed to identify the risk factors associated with bronchopulmonary dysplasia and compare the costs of disease.

Material and Methods A retrospective chart review was performed for the patients with a gestational age of less than 32 weeks and a birthweight of less than 1500 grams, who had been admitted to our unit between 2006 and 2008. Babies who had been referred to another hospital or who died before 28 days were not included in the study. Demographic features, perinatal and natal risk factors, complications and billing amounts were recorded and compared.

Results There were 652 patients in the specific time frame. Bronchopulmonary dysplasia developed in 150 of them, of which 86 (15.2%) were mild, 31 (4.8%) were moderate and 33 (5.1%) were severe. Prenatal hypoxia, resuscitation at birth, vaginal delivery, 5th minute Apgar score, lower gestational age, lower birthweight and male gender were significantly associated with the development of BPD. On the other hand, postnatal factors such as RDS, pulmonary hemorrhage, sepsis, TTN, hypotension, necrotising enterocolitis, intraventricular hemorrhage grade III-IV, anemia, neutropenia and thrombocytopenia were significantly associated with BPD. Hospital costs were significantly higher in patients with BPD.

Comment The development of BPD is affected by natal and postnatal factors rather than antenatal factors and birthweight. Prevention of BPD is also effective in reducing hospital costs.

Background Retinopathy of prematurity is a vasoproliferative disorder that can cause blindness and adverse visual outcomes in extremely premature neonates. Red light at 670nm wavelength promotes cellular differentiation, proliferation and wound repair.

Aims To determine whether 670nm light promotes normal retinal vessel development and may protect against ROP.

Methods Four groups of C57BL/6J mice were used: 1) Control; 2) OIR - 75% oxygen p7–12 days and normoxia p12–17 days; 3) 670nm light - 9 J/cm² daily from p7–17; 4) 670nm light - 9 J/cm² daily from p7–17. At p17 animals were sacrificed and retinal vasculature labelled with Lectin. Neovascularisation and vaso-obliteration were analysed using established protocols. Weight and length measurements were taken daily until the animals were sacrificed and all organs were harvested, weighed and examined macro- and microscopically.

Results Neovascularisation was significantly reduced in the 670nm treated OIR group (p<0.05). The 670nm treated mice had increased body weight from p13 but no change in length. The OIR+670nm mice had reduced alveolar haemorrhage in comparison to the OIR only mice (p<0.05).

Conclusions Exposure to 670nm red light appears to promote normal retinal vessel development and may protect against ROP. 670nm treatment may also reduce oxygen induced lung injury.