Abstract 552 Figure 1 Abdominal distention

Feeds were stopped. Investigations ruled out NEC. After 2 days the infant improved clinically and feeding was recommenced. A further episode occurred, coinciding with reintroduction of full expressed breast milk feeds. Further maternal dietary history revealed an abnormally high intake of uncooked onions. After removing onion from her diet the problem resolved.

Conclusions Onion is used in complementary medicine for antimicrobial, antifungal, glucose and lipid lowering properties. Human studies have associated high maternal intake with infantile colic in breastfeeding infants. The intestinal flora of premature infants is immature, hindering gut absorption and metabolism. Abdominal distension occurs as gas builds up in the bowel.

A diet containing plentiful fruit and vegetables is advocated for breastfeeding mothers. In the case of onion and cruciferous vegetables awareness of the potential effect on the immature gut is important.

553 DISPARITIES IN COGNITIVE DOMAINS SEEN IN PATIENTS WITH KABUKI SYNDROME

doi:10.1136/archdischild-2012-302724.0553

M Nakamura, 1M Hirai, 1Y Muramatsu, 1S Mizuno, 1A Matsumoto. 1Institute for Developmental Research, Aichi Human Service Center; 2Central Hospital, Aichi Human Service Center, Kasugai, Japan

Background It is important to clarify the characteristic traits of the cognitive functions of Kabuki syndrome patients in order to choose appropriate pedagogical techniques.

Methods The cognitive functions in seven participants with Kabuki syndrome were investigated using the Kaufmann assessment battery for children test, the Benton facial recognition test and Theory of Mind test, with some copying tasks of two and three dimensional line drawing figures. The results were compared to those of seven Williams syndrome participants.

Results The findings indicated disparities among cognitive areas in the Kabuki syndrome participants with stronger subtest “number recall” than the subtest “gestalt closure” in the Kaufmann assessment battery for children test (p<0.05). The disparities were compatible as previously described. The difficulties in copying the line drawing figures suggested a dorsal pathway dysfunction similar to that in Williams syndrome patients, but further longitudinal observation is needed. In the Kabuki syndrome participants, four of five participants who could perform the Theory of Mind test could pass the test, whereas only two out of six in the Williams syndrome patients could do so. The discrepancies between the results of the Benton facial recognition test and Theory of Mind test were the opposite of those in the Williams syndrome patients, in spite of anecdotal observations of similar tendencies in social interaction.

Conclusion Kabuki syndrome is another disease that shows disparities among cognitive functions. Investigating this syndrome may help us to understand the mechanisms of human cognitive function.

554 KOOLAN SYNDROME IS A NOVEL GENOMIC DISORDER WITH MENTAL HANDICAP MULTIPLE CONGENITAL ANOMALY DUE TO MICRO DELETION AT 17Q21.31

doi:10.1136/archdischild-2012-302724.0554

AM Ismail, MJ Mahony, AM Murphy, W Oreadon. Paediatric Department, Mid Western Regional Hospital University of Limerick, Limerick, Ireland

Aim Our aim is to report a case of koolan syndrome in a 3 year old male child.

Methods Clinical history, physical examination, clinical photography results of molecular genetic testing are presented.

Results A male infant was born to a healthy Irish Caucasian non consanguinous couple by normal vaginal delivery at 38 weeks gestation, Birth weight 2.3 kgs, and head circumference 33.5cms. It was his mothers third pregnancy. The first was a molar pregnancy. Second resulted in a birth of an Edward’s syndrome who died at 3 weeks of age.

At birth he was hypotonic admitted to neonatal unit with low blood glucose of 1.6 mmol/L and on examination he has low set ears, long face widely spaced nipples narrow palpebral fissures and right descended testis with feeding difficulty in neonatal period for which he required nasogastric feeds for first 3 weeks of life. With in last 3 years he is having global developmental delay pleasant behaviour and learning difficulties.

555 PERINATAL NEUROBLASTOMA WITH A GERMLINE INTERSTITIAL 2P DUPLICATION INVOLVING THE MYCN GENE: A CASE REPORT

doi:10.1136/archdischild-2012-302724.0555

1O Warad, 1S Kirmani, 1P Marri Reddy, 1M Nemerugur, 1V Rodriguez, 1A Nageswara Rao. 1Division of Pediatric Hematology-Oncology; 2Department of Pediatric and Adolescent Medicine; 3Department of Medical Genetics; 4Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA

Background/Aims MYCN proto-oncogene is located on chromosome 2p24. MYCN amplification is a poor prognostic factor in neuroblastoma. However, the role of germline MYCN copy number gain is unclear. It is unknown if it is a prerequisite for MYCN amplification or an independent event in neuroblastoma.

Methods Case report of perinatal neuroblastoma with a mosaic interstitial 2p duplication and literature review.

Results A 3.3 cm right suprarenal mass was noted in a 2 day old infant with bilateral postaxial polydactyly, syndactyly and bicuspid aortic valve. He was observed clinically until 3 weeks of age when he presented with increasing abdominal distension, prominent hepatomegaly, enlarging suprarenal mass, and marked elevation of urinary VMA/HVA levels. Diffuse liver MIBG avidity was noted. Emergent chemotherapy was started and he underwent decompressive laparotomy secondary to abdominal compartment syndrome. He is currently five months into therapy and doing well. aCGH performed on peripheral blood leukocytes showed mosaic interstitial duplication from 2p24.1 to 2p25.3 involving the
Abstracts

MYCN gene which was confirmed by FISH. Tumor MYCN amplification status is unknown.

Conclusion Management of perinatal neuroblastoma includes close observation with therapeutic intervention reserved for advanced stage and/or clinical progression. Two of the five cases of neuroblastomas described in patients with dysmorphic features and a germline partial 2p duplication, were detected perinatally. All patients had an aggressive clinical course. In the subset of patients with perinatal neuroblastoma and multiple congenital anomalies, FISH or aCGH testing for partial 2p gain may identify those who may need more aggressive management.

556 IGFR1 DELETION IN A PRENATAL CASE

doi:10.1136/archdischild-2012-302724.0556

1M Kammoun, 1R Hichri, 1H Hannechi, 1S Mechmech, 1D Hmida, 1M Bibi, 1A Saad, 1S Mougou. Departments of Cytogenetics and Reproductive Biology; Departments of Gynecology Obstetrics, Farhat Hached University Teaching Hospital, Sousse, Tunisia

Small fetuses constitute a large group including healthy small fetuses, fetuses suffering from utero-placental insufficiency or chromosomal abnormality. In the latter case, chromosomal rearrangements may be showed by fetal karyotyping. However, they are usually cryptic and require to be detected by molecular investigations.

In this study, we report on a case of 15q26 microdeletion diagnosed prenatally in a fetus found to have severe intra uterine growth retardation, congenital diaphragmatic hernia and poly cystic kidneys identified at 28 weeks of gestation by ultrasonography.

Amniocentesis was performed and revealed a normal karyotype of 46, XX. However, phenotypic features let us to test the 15q26 microdeletion which was confirmed by IGFR1 FISH probe.

IGFR gene is involved in pre and post natal growth. Monosity for IGFR1 gene is responsible for growth delay, microcephaly, mental retardation, micrognathia and deafness. Congential diaphragmatic hernia and poly cystic kidneys are common findings in 15q26 microdeletion. Genotype phenotype correlation localized critical region implicated in diaphragmatic hernia in 15q26.1–q26.2. NR2F2, CHD2, RGMa and SIAT8B are considered to be most likely candidate genes. Genes involved in kidney defect are little studied. In our case, the deletion must be extended to 15q26.1. Molecular characterization by CGH array is considered to refine genotype phenotype correlation and to localize candidate genes for diaphragmatic hernia and kidney defect.

15q26 microdeletion causes intra uterine and post natal growth retardation variably associated to other malformations. We highlight the importance of molecular analysis in the prenatal diagnosis of cryptic chromosomal abnormalities.

558 PRADER-WILLI SYNDROME DUE TO MATERNAL UNIPARENTAL DISOMY FOLLOWING ASSISTED REPRODUCTIVE TECHNOLOGY

doi:10.1136/archdischild-2012-302724.0558

DO Cogulu, T Atik, E Karaca, H Onay, F Ozkinay. Ege University Faculty of Medicine, Izmir, Turkey

Assisted Reproductive Technology (ART) refers to methods used to provide pregnancy by the manipulation of sperm and ova in vitro. Concern has been raised recently on the safety about the health of children born after ART. Although abnormal genomic imprinting has been shown to be involved in a number of genetic syndromes identified in the pregnancies with ART, there is a lack of evidence linking ART with the Prader-Willi syndrome (PWS) which is caused by the lack of expression of paternally inherited genes on chromosome 15q11–q13. Paternal microdeletion (70%), maternal uniparental disomy (25–30%), and imprinting defect (2–5%) are the main causes of PWS. Here 2-year-old male/female twins, male with upd(15)mat, born to a nonconsanguinous parents following ART is presented. The proband was between 90–97 percentile for height, weight and head circumference on admission. Physical examination showed hypotonia, almond-shaped palpebral fissures, low-set ears, long philtrum, small hands and feet. His history revealed feeding difficulties and delayed developmental milestones. MRI, EEG and EMG were normal. Echocardiography showed supravalvular pulmonary stenosis, which disappeared with aging. Pelvicalestiasis was demonstrated sonographically. Serum biochemical tests, thyroid function tests and amino acid chromatography were normal. Karyotype analysis, FISH analysis for PWS and subtelomeric regions were normal. DNA methylation analysis revealed maternal uniparental disomy. In conclusion this case contributes to the literature in two ways, first the importance of clinical evaluation with molecular testing in the diagnosis of PWS is pointed out, and second ART may have an effect on the occurrence of imprinted diseases such as PWS.

557 SUPPOSED’SATELLITE 8Q’ CHROMOSOME ASSOCIATED TO A GROWTH RETARDATION AND NEUROLOGY DEVELOPMENT DELAY

doi:10.1136/archdischild-2012-302724.0557

1MT Garcia, 1L Rodriguez, 1M Benedict, 1L Llana, 1L Golmayo. 1Hospital Madrid Sanchinarro, 2Hospital Madrid Torrelodones, Madrid, Spain

Polymorphisms are cytogenetic laboratory findings that in most cases are inherited without clinical repercussion, when they are found in a karyotype usually none additional studies are carried out. One of the most common is the presence of a satellite (NOR: nucleolus organizer regions) on a non-acrocentric chromosome. These extra NOR regions generally result from a translocation between a NOR region of an acrocentric chromosome and a non-acrocentric chromosome and are easily confirmed by NOR-bands in laboratory. These translocations are usually terminal and have been described on multiple chromosomes, the most frequent involves de Y chromosome. We present a case with a satellite chromosome and clinical expression. A 24 months old girl was referred to our hospital with deeply postnatal growth retardation, dysmorphic features, motor delay and seizures. Cytogenetic studies were requested and a satellite in a chromosome 8 (8qs) was founded. FISH showed on the abnormal chromosome 8 a hybridization signal much bigger than the one detected on the normal homologue, these suggest a 8q24 inverted duplication. Array-CGH analysis at 40 Kb resolution confirmed the duplicated region of 17.2 Mb in 8q24.1–q24.3, associated to a terminal 55 Kb deletion. Furthermore, a triplicated region of 76 Kb between the duplicated and deleted regions was detected. The diagnosis is a 46, XX invdupdel (8) de novo.

With this case we want to show that properly cytogenetic studies are very important in order to define the “supposed satellite chromosome” and to find other chromosome abnormalities that could explain the clinical findings of some patients.

559 WILLIAMS SYNDROME PRESENTING WITH FINDINGS CONSISTENT WITH ALAGILLE SYNDROME

doi:10.1136/archdischild-2012-302724.0559

1P Sakhuja, 1H Whyte, 2O Chitayat. 1Acute Care Transport Services, Division of Neonatology, 2Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Canada