assessed the symptoms of upper airway cough syndrome, asthma medication use and associated risk factors. Parents were asked their views of these assessments as an alternative to attending clinic utilising a Likert questionnaire cuing at 1 not at all and 6 a lot. All children performed pulmonary function tests at the clinic and these were compared to the ACT scores. The RAP was compared to Physician assessment of Asthma and associated co morbidities.

Results One hundred and nine questionnaires were distributed with 102 fully completed. The M: F was 1:8:1. The mean age was 9.1. Asthma severity was mild in 28 (23%), moderate in 59 (59%) and severe in 18 (18%). The positive predictive value of ACT versus pulmonary function tests was 89%. The RAP identified 19 (18.6%) children with good asthma control but significant UACS symptoms. Fifty six (55%) parents would utilise the questionnaire to obviate a clinic visit, if rapid access to the clinic was available.

Conclusion Questionnaire assessment can adequately identify the absence of asthma and UACS symptoms in children and is acceptable to more than half of parents attending an asthma clinic.

REGULATORY T CELLS SUBSETS IN CHILDREN WITH SLE

In the case of SLE, Treg deficiencies have been described in mouse models of SLE. However, there are somehow conflicting data in the literature on whether Treg cells in human SLE are numerically and/or functionally impaired. We aimed to quantify CD4+/CD25+Foxp3+ T cells in children with SLE and to correlate these findings with their disease activity scores and drug therapy. We enrolled 37 pediatric SLE patients and 20 healthy children. The disease activity was assessed by measuring serum levels of anti-dsDNA antibody and by the scores of SLEDAI. The CD4+/CD25+, CD4+/CD25+Foxp3+ and CD4+/CD25+Foxp3+ cells in patients were significantly increased than controls. There was no significant difference in the FoxP3% gated on CD4+/CD25+Foxp3+, CD4+/CD25+Foxp3+ and CD4+/CD25+ cells in patients and controls and between different grades of activity, different lines of treatments and patients outcomes as regards all studied values. There was no significant correlation between any of studied parameters with SLEDAI score except gated lymphocytes which have significant negative correlation. The increase of CD4+/CD25+ Foxp3+ T cells in pediatric patients with active SLE may be a result of increased usage of corticosteroids that affect the phenotype of the T cells without affection on its regulatory suppression function indicated by FoXP3.

PRENATAL ALLERGEN EXPOSURE FACILITATED AIRWAY REMODELING BY AIRBORNE ALLERGEN STIMULI IN POSTNATAL LIFE

Background Murine asthma models are mainly created through adulthood sensitization, but lack airway remodeling hallmarks.

Aims This study aimed to examine airway remodeling in the prenatally-sensitized murine asthma model.

Methods FVB/N fetuses were exposed to aluminum-free ovalbumin (OVA), of 50 µg on gestational day 14, and subjected to aerosolized OVA challenge in their postnatal life. Lung sections were on gestational day 14, and subjected to aerosolized OVA of 50 µg on gestational day 14, and subjected to aerosolized OVA challenge in their postnatal life. Lung sections were assessed by measuring serum levels of anti-dsDNA antibody and by the scores of SLEDAI. The CD4+ and CD25+CD25+ cells in patients were significantly increased than controls. There was no significant correlation between any of studied parameters with SLEDAI score except gated lymphocytes which have significant negative correlation. The increase of CD4+ and CD25+Foxp3+ cells in patients and controls and between different grades of activity, different lines of treatments and patients outcomes as regards all studied values. There was no significant correlation between any of studied parameters with SLEDAI score except gated lymphocytes which have significant negative correlation. The increase of CD4+ and CD25+ Foxp3+ T cells in pediatric patients with active SLE may be a result of increased usage of corticosteroids that affect the phenotype of the T cells without affection on its regulatory suppression function indicated by FoXP3.

THE DEFICIT IN IMMUNOGLOBULIN A, AUTOIMMUNITY RISK

Introduction and objectives The immunodeficiencies (ID), by the subsequent impairing of the immunoregulation, may be at the origin of certain autoimmune diseases (AID).

The deficit in immunoglobulin A is one of the most frequent ID associated with AID.