The black dotted line: Controls without BP (p=0.69, p<0.0001).
The solid line: Preterm AGA without BP (p=0.38, p=0.11), the red dotted: preterm AGA with BP (p=0.06, p=NS).

At 9 years, preterm AGA with BP (n=13) had lower length SDS (p=0.005), weight SDS (p=0.006) and head circumference SDS and a tendency to lower height catch-up (p=0.09) compared to preterm AGA without BP (n=18). Fasting levels of IGF-I, insulin and leptin were lower in all Pretermers with BP.

Preterms with SP (n=8) had a lower height catch-up (p=0.009) compared to those without SP (n=30).

Conclusion Children born preterm have an increased risk for SP and BP. These disorders are associated with reduced catch up in height.

Results Both cases presented with abdominal pain and hepatomegaly, combined with nausea and dyspeptic complaints. Laboratory investigation revealed marked elevation of serum transaminase levels. Synthetic function of the liver stayed intact. Abdominal ultrasound showed isolated, homogenous hepatomegaly, without other abdominal abnormalities. In one case liver biopsy was performed, showing hepatic glycogenosis. Other causes for hepatomegaly were excluded. With improved diabetic control all complaints improved within three weeks, with normalisation of serum transaminase levels.

Review of literature that hepatic glycogenosis, not frequently described, is an important complication of type I diabetes mellitus. Hepatic glycogenosis as result of glycogen storage in hepatocytes, caused by periods of hyperglycaemia and frequent insulin boluses. This process is reversible with improved glycaemic control.1,2

Conclusions Hepatic glycogenosis is an important complication of type I diabetes mellitus which can be reversible with the proper treatment. Therefore, medical attention is necessary.

References