Abstract 356 Figure 1 Study design
At postnatal day 2, infants received a primed continuous infusion of \[^{13}\text{C}_6,^{15}\text{N}\]leucine. Mass spectrometry was used to determine the fractional and absolute albumin synthesis rates (FSR and ASR, respectively).

Results Albumin FSR, concentration, and ASR were not significantly different between groups (Figure 2; median, IQR).

Conclusion Albumin concentration was in normal range in all groups. Albumin synthesis rates and concentration are not increased upon introduction of 2g lipids/(kg.d) and 3.6g AA/(kg.d) from birth onwards.

Abstract 357 Figure 1 Human milk BSSL at different study points
Conclusions The increased levels of human milk BSSL could compensate for low endogenous capacity to digest dietary fat in early life as efficient absorption of lipids is important, not only for energy utilization but also for optimal growth and functional neurodevelopment.

Background and Aims The efficient digestion of milk triglycerides is guaranteed by the combined action of gastric lipase, colipase-dependent pancreatic lipase, and bile salt-stimulated lipase (BSSL). Human milk contains the major part of BSSL. Data regarding the dynamic changes of human milk BSSL are scarce.

The aim of this study was to evaluate the changes of human milk BSSL content at different stages of lactation by proteomic techniques.

Methods We designed a prospective longitudinal study. Human milk samples were collected from 18 healthy mothers who delivered a singleton term newborn (gestational age 37–41 weeks) on the 3rd, 7th, 15th, and 60th postpartum day. Proteomic techniques were carried out to evaluate different profile expression of BSSL in milk:

Results BSSL levels increased significantly from the 3rd to the 60th postpartum day (figure).