oxygenation, which may play a role in the multifactorial pathophysiology of necrotizing enterocolitis (NEC).

The aim of this study is to evaluate by NIRS the effects of bolus and continuous enteral feeding on splanchnic and cerebral oxygenation in preterm infants with normal feeding tolerance.

Methods

Eighteen healthy preterms (GA 27–32 weeks), tolerating at least 100 mL/kg/1/day of fortified human milk or preterm formula, underwent a 6-hours simultaneous monitoring of cerebral and splanchnic oxygenation using NIRS-200 oximeter. Sensors were placed on frontal and sub-umbilical region. During the monitoring they randomly received a 10-minutes bolus meal and a 3 hours continuous meal.

Recorded values of cerebral and splanchnic Tissue Oxygenation Index (TOI) were clustered in 5-minutes intervals and compared between different feeding techniques using Wilcoxon Signed Ranks Test. Statistical significance was set at p≤0.05.

Results

Splanchnic oxygenation significantly decreased (p<0.05) during continuous feeding, from 1.30’ hour after the beginning to almost the end of the feed. No differences were found on cerebral oxygenation.

Conclusions

To the best of our knowledge, this is the first study comparing the effect of different feeding techniques on splanchnic and cerebral oxygenation in preterms. A significant reduction in splanchnic oxygenation was observed during continuous enteral. A possible role of these findings on the multifactorial NEC pathogenesis remains to be investigated.

Abstracts

1. **IS FOLIC ACID SUPPLEMENTATION REALLY NECESSARY IN PRETERM INFANTS WITH <32 WEEKS OF GESTATION?**

 doi:10.1136/archdischild-2012-302724.0347

 Background and Aims

 The main goal of this study was to determine the necessity of folic acid supplementation in preterm infants.

 Methods

 Infants born ≤32 weeks of gestation were included in the study with parental consent. Blood samples for the determination of serum folate levels were obtained on days 14 and 28 postnatally, as well as 36 weeks postconceptionally (or just before discharge if patients are discharged before 36 weeks) - samples A, B and C, respectively. Infants were divided into three groups based on mode of feeding: breast milk (HBM), fortified HBM or preterm formula (PF).

 Results

 A total of 162 preterm infants were enrolled in the study, 17(10.5%) of whom received HBM alone, 94(58%) received fortified HBM and 51(31.5%) were fed with PF. Comparisons between groups revealed that preterm infants in the fortified HBM and PF groups to have significantly higher serum folic acid levels in samples C compared to those receiving HBM alone (p<0.001 for both). None of the preterm infants included developed folate deficiency during the study period.

 Conclusion

 This is the largest and most comprehensive clinical study to date evaluating the need for folic acid supplementation in preterm infants who were fed using either modern PFS or milk fortifiers mixed with HBM. Our results suggest that fortified HBM use in preterm infants can alleviate the need for further folic acid supplementation. On the other hand, in preterm infants who are unable to receive HBM folic acid support can be provided with PFS.

2. **EFFECTS OF POSTNATAL ENERGY AND MACRONUTRIENT INTAKES ON GROWTH IN EXTREMELY PRETERM INFANTS: A POPULATION-BASED STUDY**

 doi:10.1136/archdischild-2012-302724.0349

 Background

 Extremely preterm infants often experience growth failure and adequate nutritional supply may be difficult to achieve. It is still debated to what extent nutrition affects growth at an early stage in life. The aim of this study was to explore associations between energy and macronutrient intakes and growth.

 Methods

 The study population consists of extremely preterm infants born in Sweden during 2004–2007. Detailed data of nutritional intakes and anthropometric measurements were retrieved from hospital records.

 Results

 Infants (n=602) had a mean±SD gestational age of 25.3±1.1 weeks and birth weight 765±171g. From birth to 70 days of age, energy and protein intakes were 119.3±11.5kcal/kg/day and 3.2±0.4g/kg/day respectively. Infants showed postnatal growth failure: mean standard deviation scores (SDS) decreased by 1.5 for weight, 2.3 for length and 0.8 for head circumference.

 The following confounders were included in the multivariate analyses: Gestational age, CRIB-score, duration of mechanical ventilation, days on postnatal steroid and antibiotics treatment, infant

3. **EFFECTS OF GLUTAMINE SUPPLEMENTATION ON BRAIN DEVELOPMENT OF VERY PRETERM CHILDREN: A FOLLOW-UP STUDY AT SCHOOL-AGE**

 doi:10.1136/archdischild-2012-302724.0348

 Background

 We found evidence that reduction of serious infections by neonatal glutamine supplementation improves head growth in the first year of life, as well as brain structure volumes at school-age. This suggests an early programming effect of nutritional intervention with enteral glutamine.

 Methods

 First, we investigated growth trajectories of head circumference, weight, and length in the first year for 65 very preterm children that originally participated in a randomized controlled trial on enteral glutamine supplementation between day 3 and 30 of life. Second, we measured brain structure volumes and white matter integrity for 52 very preterm children at school-age, using magnetic resonance imaging (MRI) and Diffusion Tensor Imaging (DTI), respectively. Furthermore, differences in functional outcomes were explored. Group differences were tested using ANOVA statistics.

 Results

 Glutamine supplementation was associated with improved growth trajectories of head circumference in the first year of life (d=0.66, p=0.03). Furthermore, glutamine supplementation increased white matter (d=0.54, p=0.03), hippocampus (d=0.47, p=0.02), and brain stem (d=0.54, p=0.04) volumes at school-age. All differences were strongly related with the number of serious neonatal infections (all p<0.02). Glutamine supplementation did not influence measures of motor, cognitive, and behavioral functioning at school-age.