Vitamin D supplementation in early childhood and risk of type 1 diabetes: a systematic review and meta-analysis

C S Zipitis, A K Akobeng

ABSTRACT

Objectives: To assess whether vitamin D supplementation in infancy reduces the risk of type 1 diabetes in later life.

Methods: This was a systematic review and meta-analysis using Medline, Embase, Cinahl, Cochrane Central Register of Controlled Trials and reference lists of retrieved articles. The main outcome measure was development of type 1 diabetes. Controlled trials and observational studies that had assessed the effect of vitamin D supplementation on risk of developing type 1 diabetes were included in the analysis.

Results: Five observational studies (four case-control studies and one cohort study) met the inclusion criteria; no randomised controlled trials were found. Meta-analysis of data from the case-control studies showed that the risk of type 1 diabetes was significantly reduced in infants who were supplemented with vitamin D compared to those who were not supplemented (pooled odds ratio 0.71, 95% CI 0.60 to 0.84). The result of the cohort study was in agreement with that of the meta-analysis. There was also some evidence of a dose-response effect, with those using higher amounts of vitamin D being at lower risk of developing type 1 diabetes. Finally, there was a suggestion that the timing of supplementation might also be important for the subsequent development of type 1 diabetes.

Conclusion: Vitamin D supplementation in early childhood may offer protection against the development of type 1 diabetes. The evidence for this is based on observational studies. Adequately powered, randomised controlled trials with long periods of follow-up are needed to establish causality and the best formulation, dose, duration and period of supplementation.

Type 1 diabetes is characterised by autoimmune destruction of insulin-producing β cells in the pancreas. The specific factors that initiate the autoimmune process are not yet well understood, but β cell destruction often begins during infancy and continues over many months or years. By the time type 1 diabetes is diagnosed, about 80% of the β cells have been destroyed. Peak incidence occurs around puberty, and the disease is usually diagnosed before age 30. It is commonest in people of European descent and affects 2 million people in Europe and North America. There is a marked geographic variation in incidence, with a child in Finland being about 400 times more likely than a child in Venezuela to acquire the disease. It is estimated that currently the incidence is increasing by 5% per year. Furthermore, it is predicted that by 2010 the incidence of type 1 diabetes will be 40% higher than it was a decade earlier.

The fact that people with affected first-degree relatives are a lot more likely to develop type 1 diabetes than the general population points to an important genetic influence. However, low concordance among identical twins and the fact that many children with a genetic predisposition to the disease do not develop it suggest that environmental factors are also important. One of the environmental factors thought to be protective against the development of type 1 diabetes, is early supplementation with vitamin D.

Vitamin D is either produced endogenously, through skin exposure to sunlight, or exogenously from ingestion of foods and supplements. Breast milk contains little vitamin D, although this is influenced by the vitamin D status of the mother, and this is the reason behind the recommendation for an administered supplement for breastfed infants. Furthermore, in northern areas, including the northern United States, Canada and most of Europe, little or no vitamin D is produced in the skin during winter months. Even in the summer and at lower latitudes, many infants are so thoroughly protected from sun exposure that they produce little endogenous vitamin D. In addition, there is evidence that over the last few decades the uptake as well as the dosage of vitamin D supplementation have been declining leading to a resurgence of rickets and hypocalcaemia, as well as speculation about the possible role of vitamin D in the increasing incidence of type 1 diabetes and other autoimmune conditions such as rheumatoid arthritis and multiple sclerosis.

Evidence for a causal relationship between vitamin D supplementation and decreased risk of type 1 diabetes comes from experiments in the non-obese diabetic mouse. Furthermore, there is evidence of lower plasma 25-hydroxyvitamin D levels at diagnosis of type 1 diabetes compared to controls. Moreover, epidemiological evidence suggests that type 1 diabetes is more prevalent in higher latitudes of the tropics and subtropics and that there is a seasonal variation in type 1 diabetes with the largest proportion of cases diagnosed during autumn and winter and the lowest during the summer. In addition, epidemiological studies suggest that supplementation with vitamin D in infants might be important in conferring protection against the development of type 1 diabetes.

In this study, we sought to explore the potential association between vitamin D supplementation in early childhood and reduced risk of type 1 diabetes by conducting a systematic review and meta-analysis of human trials and observational studies.
METHODS

Types of studies
We searched for randomised controlled trials and observational studies. We included observational studies if they: (1) compared risk of type 1 diabetes in people who were supplemented with vitamin D with risk in those who were not supplemented, (2) had controlled for potential confounders by matching in the study design or had used risk adjustment in the analysis and (3) had provided sufficient data to allow the reconstruction of 2 by 2 tables or to determine relative risks (RR) or odds ratios (OR) with 95% confidence intervals (95% CI). Subjects given cod liver oil were considered to have been supplemented with vitamin D in line with previous publications. 13 21 22

Search strategy

We then searched the reference lists of all relevant articles retrieved from the computerised database search to find other potentially relevant articles. The titles and/or abstracts of all identified studies were reviewed and full manuscripts obtained for those that appeared potentially relevant.

Assessment of study eligibility
Each article was independently assessed by two reviewers for eligibility using the inclusion criteria above. Any disagreement among reviewers was discussed and agreement reached by consensus.

Assessment of methodological quality
Two investigators independently rated the methodological quality of selected studies using the Critical Appraisal Skills Programme (PHRU, Oxford, UK) tool for case-control studies. 23 We recorded each quality assessment criterion as being “met”, “unmet” or “unclear”. However, as several criteria were used to assess validity, these were summarised to derive an overall assessment of how valid the results of each study were by grading them as A (low risk of bias), B (moderate risk of bias) or C (high risk of bias) according to published criteria. 24

Data extraction
A data abstraction form was developed and used to extract information on the relevant features and results of included studies. Two reviewers independently extracted and recorded data using a predefined checklist. When data were missing or unclear in a paper, attempts were made to contact the authors for more information.

Statistical methods
Statistical analyses were performed using StatsDirect statistical software (v 2.6.1; StatsDirect, Altrincham, UK). Individual OR and their 95% CI from each case-control study were calculated. Where possible, a pooled OR with 95% CI was calculated. The meta-analysis was conducted using the Mantel-Haenszel method. 25

Heterogeneity
The statistical validity of combining the results of the various trials was assessed by examining the homogeneity of the
outcomes from the various trials. This was carried out by: (1) using the Cochran Q test and (2) inspection of the graphical display.

RESULTS

We identified 19 potentially relevant articles on the association between vitamin D supplementation and the development of type 1 diabetes (fig 1). Five studies were identified that satisfied the inclusion criteria and these were included in the review. Four of them were case-control studies and one was a cohort study. No randomised control trials were identified. The study by Littorin et al was excluded because it did not compare rates in those exposed to or not supplemented with vitamin D, but rather the levels of vitamin D over time in those with type 1 diabetes. The study by Visalli et al was excluded because it did not provide enough data for construction of a 2 by 2 table to determine OR and repeated attempts to get more information from the authors proved unsuccessful.

Methodological quality of included studies

Due to the retrospective design, all the case-control studies were prone to recall bias. All of the included case-control studies except that by Tenconi et al used healthy children whose non-diabetic status was not specifically confirmed. However, as type 1 diabetes is unlikely to be asymptomatic for a long period of time, the possibility of misclassification for some controls is small. Most case-control studies used cases up to 15 years of age, but Tenconi et al used a higher cut-off value (50 years). None of the case-control studies included used an objective method to ascertain the vitamin D status of cases or controls, and none attempted to quantify the total amount of vitamin D intake from the diet or that from exposure to the sun. In addition, none of the studies looked at the ethnic backgrounds of cases versus controls. A summary of the methodology of the included case-control studies is shown in table 1.

The methodological quality of each study was summarised using the categories described above. All case-control studies included were graded B. The cohort study was graded B because it did not use an objective method of assessing the vitamin D status of cases and controls and because no mention of blinding to the outcomes was mentioned. Furthermore, although a fair number of confounding factors were accounted for, some important ones were not, for example duration of breastfeeding and age at weaning.

<table>
<thead>
<tr>
<th>Reference (country)</th>
<th>Case selection</th>
<th>Control selection</th>
<th>Exposure measurement</th>
<th>Confounding factors considered</th>
<th>Sample size</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stene et al (2000) (Norway, Vest-Agder)</td>
<td>National Childhood Diabetes Register (NCDR)</td>
<td>Random selection from official population register</td>
<td>Questionnaire</td>
<td>Age, sex, duration of exclusive breastfeeding, maternal education, maternal use of vitamin D supplements in pregnancy</td>
<td>78 cases, 980 controls</td>
<td>Cases: mean 11.1, SD 3.8; controls: mean 8.5, SD 4.7</td>
</tr>
<tr>
<td>EURODIAB Austria</td>
<td>NCDDR</td>
<td>Random sample from schools</td>
<td>Questionnaire</td>
<td>Combined results adjusted for age, sex, low birth weight, short duration of breast feeding, maternal age and study centre</td>
<td>95 cases, 346 controls</td>
<td>Not specified</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>NCDDR</td>
<td>Random sample from schools and polyclinics</td>
<td>Interview</td>
<td>Not specified</td>
<td>126 cases, 430 controls</td>
<td>Not specified</td>
</tr>
<tr>
<td>Latvia</td>
<td>NCDDR</td>
<td>Population register</td>
<td>Interview</td>
<td>Not specified</td>
<td>109 cases, 293 controls</td>
<td>Not specified</td>
</tr>
<tr>
<td>Lithuania</td>
<td>NCDDR</td>
<td>Random sample from polyclinics</td>
<td>Questionnaire</td>
<td>Not specified</td>
<td>111 cases, 250 controls</td>
<td>Not specified</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>NCDDR</td>
<td>Random sample from preschools and schools</td>
<td>Interview</td>
<td>Not specified</td>
<td>55 cases, 176 controls</td>
<td>Not specified</td>
</tr>
<tr>
<td>Romania</td>
<td>NCDDR</td>
<td>Random sample from health service register</td>
<td>Interview</td>
<td>Not specified</td>
<td>82 cases, 276 controls</td>
<td>Not specified</td>
</tr>
<tr>
<td>N. Ireland</td>
<td>NCDDR</td>
<td>General practitioner register</td>
<td>Questionnaire</td>
<td>Not specified</td>
<td>168 cases, 419 controls</td>
<td>Not specified</td>
</tr>
<tr>
<td>Stene et al (2003), (Norway)</td>
<td>NCDDR</td>
<td>Random selection from population</td>
<td>Questionnaire</td>
<td>Age, sex, breastfeeding, maternal age, education and smoking during pregnancy, time of weaning, number of siblings, family history of type 1 diabetes</td>
<td>545 cases, 1668 controls</td>
<td>Cases: mean 10.9, SD 3.4; controls: mean 9.3, SD 4.1</td>
</tr>
<tr>
<td>Tenconi et al (Italy, Pavia province)</td>
<td>NCDDR</td>
<td>Random selection from non-diabetic hospitalised patients</td>
<td>Interview</td>
<td>Age, sex, residency, family history of type 1 diabetes, drugs taken during pregnancy, type of delivery, early feeding, neonatal and most common childhood diseases, history of surgical operations, severe infections</td>
<td>159 cases, 318 controls</td>
<td>Cases: mean 23.24, SD 9.36; controls: mean 23.38, SD 9.64</td>
</tr>
</tbody>
</table>
1 diabetes was significantly reduced in participants who were supplemented with vitamin D (OR 0.71, 95% CI 0.60 to 0.84). The results of these studies appeared to be reasonably homogeneous and the test for heterogeneity was negative (p = 0.13).

The result of the meta-analysis is in agreement with the main outcome from the cohort study. In the latter study, the rate risk for regular versus no supplementation was 0.12 (95% CI 0.05 to 0.51) and for irregular versus no supplementation 0.16 (95% CI 0.04 to 0.74).

Type of supplement used
There were not enough data in the primary studies to allow comparison of the groups based on type of supplement used.

Dosage of supplementation
In the majority of studies no information was given about the dosage of supplements used. Stene et al (2003) speculated that the cod liver oil and the different vitamin D supplements used in Norway at the time in question would contain 10 µg of vitamin D. They divided their patients into those who had taken cod liver oil and those who had “other” forms of vitamin D. Concentrating on the group that had the cod liver oil, one can see that as the frequency of supplementation increases from one to four times per week to more than five times per week, the OR of developing type 1 diabetes decreases (OR 0.81, 95% CI 0.55 to 1.19 and OR 0.74, 95% CI 0.56 to 0.99, respectively). There is a negligible change in OR in those that had the “other” types of vitamin D supplement (OR 0.99, 95% CI 0.69 to 1.42 and OR 0.97, 95% CI 0.73 to 1.29, respectively).

There is evidence from the Hypponen study that those who used the recommended dose of 2000 IU regularly had an RR of 0.22 (95% CI 0.05 to 0.89) compared with those who regularly used less than the recommended dose. Furthermore, the authors showed that with an increase in regularity of supplementation as well as dose used, the incidence of type 1 diabetes tended to decrease. Finally, they reported that those with suspected rickets had an increased risk of developing type 1 diabetes, although the result was not statistically significant (RR 3.0, 95% CI 1.0 to 9.0).

Duration of supplementation
Only the EURODIAB study considered duration of supplementation as a factor. Although there was some improvement in the OR, they did not find any significant difference between those who were supplemented for less than a year (OR 0.69, 95% CI 0.52 to 0.95) and those who were supplemented for more than a year (OR 0.64, 95% CI 0.47 to 0.89).

Timing of supplementation
The report by Stene et al (2003) is the only one of the identified studies that looked at the effect of the time of starting supplementation with vitamin D. It appears that those who had cod liver oil between 7 and 12 months of age had lower chances of developing type 1 diabetes in later life compared to those who were supplemented between 0 and 6 months of age (OR 0.55, 95% CI 0.51 to 0.96 and OR 0.80, 95% CI 0.61 to 1.06, respectively). A similar, albeit less impressive, result was obtained for the “other” vitamin D supplements (OR 0.98, 95% CI 0.65 to 1.49 and OR 1.02, 95% CI 0.77 to 1.35, respectively).

DISCUSSION
The results of this study suggest that vitamin D supplementation in infancy may offer protection against the development of type 1 diabetes. Meta-analysis of data from four studies, which included children from many different European countries, indicated that children being supplemented had a 29% reduction in risk of developing type 1 diabetes compared with their peers who were not being supplemented. The reduction in risk was also demonstrated in a cohort study. The study by Stene et al (2003) reported no association between vitamin D supplementation and subsequent diabetes development. Although it was not clear in the paper how many of these patients used both vitamin D and cod liver oil and how many used neither of the two, we managed to obtain this information by contacting...
the authors, something that allowed inclusion of the study in the meta-analysis. Some studies were not able to show an association with a reduction in risk of type 1 diabetes, but none of them were associated with an increased risk.

Furthermore, there is evidence of a dose-response effect. The cohort study showed that those who had rickets diagnosed earlier in life (and were thus more likely to be those with the lowest amounts of vitamin D) were more likely to develop type 1 diabetes. In addition, those that were supplemented more regularly or had higher doses of vitamin D supplements, displayed a reduced risk of developing type 1 diabetes. The positive findings with increasing frequency of use were also confirmed in one of the case-control studies that looked at this variable.

One of the included studies suggests that supplementation from 7 to 12 months of age is more beneficial than supplementation from birth to 6 months. However, the former could be a marker of longer supplementation. At the same time, infants of mothers who are themselves vitamin D deficient would be at an increased risk of hypocalcaemic complications in the first few months of life, something that would necessitate earlier supplementation. Finally, there are many unexplored variables including an overall lack of accurate, reliable feeding information which could explain this observation.

The exact mechanism by which vitamin D supplementation protects against type 1 diabetes is unclear, but it has been suggested that this is likely to be through the prevention of hypovitaminosis D. The identification of receptors for the active form of vitamin D in both β cells and immune cells has led to a number of studies for the delineation of these pathways. There is evidence for a physiological role for vitamin D in the immune system, and also for a protective effect of the vitamin from cytokine-induced β cell dysfunction.

Strengths and weaknesses of the study

Our review included studies from many European countries and included four case-control studies and a cohort study. We searched multiple databases and reference lists to minimise the chance of missing relevant studies. We minimised subjectivity by carrying out study selection, data extraction and quality assessment in duplicate. However, the validity of the results of a systematic review depends on the validity of the included studies. Many of the included studies failed to take all the steps necessary to avoid bias. Our conclusions were, therefore, limited by the quality of included studies and the information provided.

The included case-control studies are subject to recall bias. If, for instance, parents of children with type 1 diabetes could recall more accurately that their children were not supplemented with vitamin D in infancy, bias could result which would tend to inflate the association in favour of supplementation. Furthermore, none of the case-control studies included an objective method to ascertain the vitamin D status of cases or controls, and none attempted to quantify the total amount of vitamin D intake from the diet or that from exposure to the sun. In addition, use of healthy controls without prior checking of non-diabetic status could lead to some misclassification. The included case-control studies are also susceptible to bias because other risk factors of type 1 diabetes could be unbalanced across children who were supplemented and those who were not, with breastfeeding being an obvious example. Some of the included studies made an attempt to control for breastfeeding (<3 months), but no information is given about volumes of formula milk consumed or amount of vitamin D in the formula milk. While the individual studies tried to control for a number of potential confounding factors, it is possible that a number of other confounding factors could have been unbalanced across children who were supplemented and those who were not. Finally, we considered those who used cod liver oil as a supplement to be similar to those receiving other forms of vitamin D. This could lead to erroneous conclusions as cod liver oil contains other components that could be protective against type 1 diabetes.

CONCLUSION

In conclusion, there is evidence from observational studies that vitamin D supplementation in infancy might be protective against the development of type 1 diabetes. Despite limitations, the Hill criteria for causality seem to be fulfilled. However, for concrete conclusions to be reached, adequately powered, randomised controlled trials with long periods of follow-up would be required to establish causality and the best formulation, dose, duration and period of supplementation.

Funding: None.

Competing interests: None.

Ethics approval: Not required.

Contributors: CSZ (guarantor) and AKA were both responsible for study selection, data extraction, validity assessment, data interpretation and writing the paper.

REFERENCES

20. Hollis BW, Pitard WB, Reinhardt TA. Relationships among vitamin D, 25-
hydroxyvitamin D, and vitamin D-binding protein concentrations in the plasma and
Prevention of rickets and vitamin D deficiency: new guidelines for vitamin D intake.
22. Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous
synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will
25. Zipitis CS, Markides GA, Swann IL. Vitamin D deficiency: prevention or treatment?
26. Merlino LA, Curtis J, Mikuls TR, et al. Vitamin D intake is inversely associated with
rheumatoid arthritis: results from the Iowa Women’s Health Study. Arthritis Rheum
among young adults at diagnosis of autoimmune type 1 diabetes compared with
control subjects: results from the nationwide Diabetes Incidence Study in Sweden
29. Keen H, Blecman S, Markides GA, et al. Use of cod liver oil during the first year of life is associated with
lower risk of childhood-onset type 1 diabetes: a large, population-based, case-control
other determinants associated with type 1 diabetes: a case-control study. Acta
vitamin D receptor agonists. Curr Med Chem Anti-Inflammatory Anti-Inflammatory Agents
34. Staeva-Vieira T, Peakman M, Von Herrath M. Translational mini-review series on
35. Kaupper T, Walter M, Ziegler A-G. Immunointervention in newly diagnosed type 1
36. Harris S. Can vitamin D supplementation in infancy prevent type 1 diabetes?
37. Brekke HK, Ludvigsson J. Vitamin D supplementation and diabetes-related
38. Wicklow BA, Taback SP, Sanjeevi CB, et al. Feasibility of a type 1 diabetes primary
prevention trial using 2000 IU vitamin D3 in infants from the general population with
41. Norris JM. Can the sunshine vitamin light on type 1 diabetes? Lancet
42. Hill AB. The environment and disease: association or causation? Proc R Soc Med
1965;58:295–300.