Towards evidence based medicine for paediatricians

Edited by Bob Phillips

Bronchiolitis: evidence based challenge

It’s the end of winter in the northern hemisphere, and paediatricians at the clinical coalface may be a little bored with the unending stream of small children sounding like old smokers. Bronchiolitis provides those who are interested in practicing evidence based medicine a great challenge: it is a common problem, desperately miserable for the children and families affected, and asks a multitude of clinical questions. How should we diagnose this condition? Should we investigate the children affected? How should we intervene to improve their lot—both generally and specifically? What is the outcome over time—and in the long term?

Archimedes has frequently taken up the challenge of offering some aspects of bronchiolitis care to a review of their evidence.1-4 We would like to take this time to point out some additional and pertinent evidence based resources. On the BestBets site you can read in more detail questions of the effectiveness of DNAse, and montelukast5 6 (though we are still not aware of any research on the utility of dropping saline into a small child’s nostrils). An evidence based medicine journal contains a summary of a recent wide ranging systematic review of standard therapeutic options (bronchodilators and steroids).7 An original review of the usefulness of diagnostic testing is also available (though not as readably).8 We would also urge readers not to forget that all “snuffle and stop breathing” episodes are not bronchiolitis,9 and offer some alternative approaches to the treatment of pertussis.10

And finally we’d like to offer a further challenge. Can we advance studies of bronchiolitis beyond enrolling only tens or hundreds of infants among the thousands that pour through our fingers, and achieve such numbers in therapeutic trials that we may truly be able to distinguish which therapies (if any) are helpful?

References

3 Kennedy N, Flanagan N. Is nasogastric fluid therapy a safe alternative to the intravenous route in infants with bronchiolitis? Arch Dis Child 2005;90:320–1
4 Ramesh P, Samuels M. Are methylxanthines effective in preventing or reducing apnoeic spells in infants with bronchiolitis? Arch Dis Child 2005;90:321–2
Is nasogastric fluid therapy a safe alternative to the intravenous route in infants with bronchiolitis?

Report by
N Kennedy, N Flanagan, Royal Belfast Hospital for Sick Children, Falls Road, Belfast BT12 6BE, UK; neilsaraben@aol.com
doi: 10.1136/adc.2004.068916

Additional information on each of the topics is available on the ADC website (www.archdischild.com/supplemental)

Table 1 Nasogastric versus intravenous therapy in the treatment of bronchiolitis

<table>
<thead>
<tr>
<th>Citation</th>
<th>Study group</th>
<th>Study type</th>
<th>Outcome</th>
<th>Key results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sammartino et al (2002)</td>
<td>73 Australian infants admitted with bronchiolitis, 55 needing fluids. 37 given fluids by NGT. 18 infants needing fluids were excluded as <4 months or reduced level of consciousness or apnoea or GO reflux needing treatment</td>
<td>Uncontrolled cohort (level 4)</td>
<td>Respiratory and heart rate, SaO2 Number going on to iv fluids</td>
<td>NGT “tolerated without incident” 2/37 deteriorated as illness progressed Removal of NGT did not help</td>
<td>Uncontrolled case series Excluded children <4 months</td>
</tr>
<tr>
<td>Vogel et al (2003)</td>
<td>409 infants in 5 New Zealand hospitals</td>
<td>Uncontrolled cohort (level 4)</td>
<td>Percentage receiving i.v. or NGT fluids in each hospital</td>
<td>15–30% received iv fluids 1–39% received NGT fluids</td>
<td>Uncontrolled series. No comparison of outcome of NGT vs. i.v. Large variations in practice</td>
</tr>
<tr>
<td>Stocks (1980)</td>
<td>7 preterm infants (1.6–2.2 kg) measured with and without an NGT in-situ</td>
<td>Controlled physiological study (level 5)</td>
<td>Nasal resistance [Rn] (measured in 7) and total airway resistance [Raw] (measured in 4)</td>
<td>Increased Rn of 50–150% with NGT in situ 30–50% increase in Raw with NGT</td>
<td>Study only of “well” preterm infants. No comment on clinical effects. Small study. Considerable measurement difficulties</td>
</tr>
<tr>
<td>Martin et al (1988)</td>
<td>8 preterm infants (1220–1740 g)</td>
<td>Controlled physiological study (level 5)</td>
<td>Change in oral/nasal airflow (measured as % total tidal volume [TV]) with and without NGT</td>
<td>Nasal TV decreased from 54% to 39% with NGT in place Total TV remained constant despite NGT</td>
<td>Small study of “well” neonates without significant lung disease</td>
</tr>
<tr>
<td>Greenspan et al (1990)</td>
<td>14 neonates <2 kg, 10 neonates >2 kg with either NG or orogastric tube (OGT)</td>
<td>Controlled physiological study (level 3)</td>
<td>Minute volume, pulmonary resistance</td>
<td>Reduced minute volume, increased pulmonary resistance in <2 kg group with NGT. No effect vs. OGT in babies >2 kg</td>
<td>Study only of “well” neonates, up to 3 kg without lung disease</td>
</tr>
</tbody>
</table>

It is mid-December. As a paediatric SHO working a busy evening shift in a district general hospital, you are called to re-site the intravenous cannula of an infant with bronchiolitis. This is the fifth time that day you have been asked to perform such a task, and you approach the distressed, chubby infant with a sense of dread. Of the 20 children on the ward, 15 have bronchiolitis and 10 are on intravenous fluids. You consider how much distress placement and regular replacement of the cannula causes these infants, and wonder if fluids could be given safely by another route. Would rehydration using a nasogastric tube (NGT) be appropriate?

Structured clinical question
In infants with bronchiolitis who need maintenance or replacement fluid therapy [subject], does administration by the nasogastric route [intervention] cause more respiratory difficulty or electrolyte disturbance [outcome] than intravenous infusion [comparison]?

Search strategy and outcome
Cochrane Library: Nil relevant
PubMed: three searches:
- “bronchiolitis” AND “nasogastric”
- “nasogastric” AND “airway” OR “airway obstruction”
- “bronchiolitis” AND “fluid” OR “rehydration”Limits: birth–18 years, human.
Search outcome: 72 papers, of which seven were relevant (see table 1). (Editorial comment by Nicolai and Politi and commentary of Milner not included in table.)
Search date: March 2004.

Commentary
Maintaining optimal hydration is an important component in the management of bronchiolitis. Practice varies between units as to the route of administration.
There is some evidence\(^1\) that a NGT increases airway resistance in preterm neonates, but not in older heavier ones.\(^2\) Total tidal volume in well neonates is not affected by an NGT.\(^3\) However, it is difficult to extrapolate from these studies to the clinical significance of an NGT in older, larger children with bronchiolitis. Expert opinion varies. Nicolai and Pohl\(^4\) and Sporik\(^5\) argue “from first principles” that the nasogastric (NG) route be avoided because of the theoretical risk of increased airway resistance. However based on the same studies cited by Sporik, Milner came to the conclusion that the NG route is acceptable in infants over 2 kg.

The case series reported by Sammartino et al and Vogel et al show that there is widespread use of the NG route in many units.\(^6\) \(^7\) However, no conclusions can be drawn from their data regarding the safety of NG fluids versus the intravenous route.

No studies were identified assessing the likelihood of electrolyte disturbance in children with bronchiolitis given intravenous rather than nasogastric fluids.

In infants with bronchiolitis, there is no good quality evidence that rehydration by the NG route is more or less safe than via the intravenous route. A randomised controlled trial is needed.

CLINICAL BOTTOM LINE

- There is no good quality evidence for or against the use of nasogastric fluids in infants with bronchiolitis. (Grade D)
- Physiological studies would suggest that use of a nasogastric tube be limited to infants >2 kg. (Grade D)
- Until good quality evidence is available, local guidelines should be followed. (Grade D)

REFERENCES

Are methylxanthines effective in preventing or reducing apnoeic spells in infants with bronchiolitis?

Report by

P Ramesh, M Samuels, University Hospital of North Staffordshire, Stoke on Trent, UK; mARTIN.samuelS@uhns.nhs.uk

doi: 10.1136/adc.2004.068825

A 2 week old infant, born at 36 weeks gestation was admitted to the paediatric ward in November with a 24 hour history of runny nose, cough, and episodes of shallow breathing and apnoeas. This was thought to be due to bronchiolitis, and the consultant paediatrician suggested starting the baby on caffeine (theophylline derivative with less side effects). As the resident middle grade doctor, I knew that caffeine has been used widely in neonatal units for apnoea of prematurity, but I wondered if there was any evidence for its use in this clinical situation.

Structured clinical question

In infants with bronchiolitis [patient] does caffeine [intervention] reduce or prevent apnoeas [outcome]?

Search strategy and outcome

Cochrane database of systematic reviews: No directly relevant study found, but there was one systematic review on the efficacy of methylxanthines in reducing apnoea of prematurity\(^1\) and another systematic review on the prophylactic use of caffeine to prevent postoperative apnoea following general anaesthesia in ex-preterm infants.\(^6\)

Medline plus (no limits): Search terms: Infants and bronchiolitis/respiratory syncytial virus infections/virus/infection

<table>
<thead>
<tr>
<th>Citation</th>
<th>Study group</th>
<th>Study type (level of evidence)</th>
<th>Outcome</th>
<th>Key results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobias (2000)</td>
<td>7 infants with RSV associated apnoea Gestational age 28–32 weeks Age at presentation 14–64 days</td>
<td>Retrospective review (level 4)</td>
<td>Prevention of mechanical ventilation</td>
<td>No infant had episodes of apnoea or bradycardia from 2 to 18 hours after the initial loading dose</td>
<td>Initial dose of caffeine base was 10 mg/kg and if further doses are needed, given as 5 mg/kg as second dose and 2.5 mg/kg as third dose</td>
</tr>
<tr>
<td>Johnston and Kuzemko (1992)</td>
<td>2 infants 1. RSV positive Gestational age 33 weeks Post conceptional age 40 weeks 2. Echo virus type 3 Gestational age 36 weeks Post conceptional age 37 weeks</td>
<td>Case report (level 4)</td>
<td>Prevention of mechanical ventilation</td>
<td>Respiration became regular with disappearance of apnoea immediately after administration of aminophylline</td>
<td>5 mg/kg of iv aminophylline followed by 5–7 days of oral theophylline</td>
</tr>
<tr>
<td>DeBuse and Cartwright (1979)</td>
<td>1 infant with RSV positive bronchiolitis Gestational age 29 weeks Post conceptional age 38 weeks.</td>
<td>Case report (level 4)</td>
<td>Prevention of mechanical ventilation</td>
<td>No apnoeic episodes occurred 9 hours after administration of theophylline</td>
<td>Oral theophylline. Loading dose of 10 mg/kg in aliquots, then 4 mg/kg 6 hrly <24 hours followed by 1 mg/kg</td>
</tr>
</tbody>
</table>

and apnoea/apnea and caffeine/xanthine/methylxanthine/ phosphodiesterase inhibitors/theophylline

There was one retrospective review and two case reports (in the form of letters to the editor) directly addressing the problem (table 2). There was also one randomised controlled trial on the usefulness of aminophylline in reducing apnoeas and intubation in term infants during prostaglandin E1 infusion.

Searches were performed in August 2004.

Commentary

Recurrent apnoea is a common problem in otherwise well preterm infants. By term equivalent age, infants have usually “outgrown” their tendency to spontaneous apnoea. However, with an additional stress, such as infection (for example, bronchiolitis) or administration of drugs that depress the central nervous system (for example, general anaesthesia, prostaglandin), then apnoea and oxygen desaturations can recur.

Caffeine is recognised to reduce apnoea and the need for mechanical ventilation in preterm infants with apnoea of prematurity. In addition caffeine prevents apnoea, bradycardia, and episodes of desaturation in growing preterm infants following general anaesthesia, while aminophylline, which is another widely used theophylline derivative, was found to be effective for the prevention of apnoea and intubation during prostaglandin E1 infusion in term infants (table 3). While these data are supportive, there may be significant differences in the mechanism of apnoea in general anaesthesia and viral induced apnoea.

We could only find three reports involving a total of 10 infants, all of whom were born preterm and presented with bronchiolitis associated apnoea approximately around term equivalent age. These reports have concluded that theophylline derivatives are effective in reducing the incidence of apnoea and avoided the need for mechanical ventilation in this clinical situation (table 1).

Caffeine has a more favourable therapeutic index than aminophylline. No major adverse effects were reported from the studies included in the systematic reviews. Jitteriness, tachycardia, and raised blood glucose are the common side effects, but routine drug level monitoring is not necessary at standard dosage.

While these three reports claim that the use of caffeine helped avoid intubation in infants with viral infection induced apnoea, there are no data from randomised controlled trials confirming these benefits. As intubation for apnoea in bronchiolitis is uncommon, a large multicentre trial would be needed.

CLINICAL BOTTOM LINE

- In addition to its proven efficacy in apnoea of prematurity, caffeine has also been shown to reduce the incidence of apnoea in ex-preterm infants following general anaesthesia and in term infants following prostaglandin infusion.
- There is only limited evidence from case reports for the use of caffeine in infants presenting with bronchiolitis associated apnoeas.

REFERENCES

Are newer macrolides effective in eradicating carriage of pertussis?

Report by

R Srinivasan, T Yeo, Llandough Hospital, Cardiff, UK; rsrmr@doctors.org.uk
doi: 10.1136/adc.2004.068783

Y ou are assessing a toddler who has presented with paroxysmal cough with a whoop and post-tussive vomiting. A clinical diagnosis of “whooping cough” is made and this is duly confirmed on pernasal swab cultures that reveal the growth of Bordetella pertussis.

From history, you note that he is allergic to penicillin and has been given erythromycin for a previous episode of...
Use of newer macrolides in pertussis

<table>
<thead>
<tr>
<th>Citation</th>
<th>Study group</th>
<th>Level of evidence</th>
<th>Outcome</th>
<th>Key results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langley et al</td>
<td>477 children (6 mth–16 y) with clinical symptoms of pertussis were randomised to receive either azithromycin (10 mg/kg on day 1 followed by 5 mg/kg once a day for 4 more days) or erythromycin estolate (40 mg/kg/day in 3 divided doses for 10 days)</td>
<td>Multicentre randomised controlled trial (level 1b)</td>
<td>Bacteriologic eradication; Negative cultures at the end of treatment Relapse: Positive cultures a week after end of treatment</td>
<td>Azithromycin group: 53/53 v erythromycin group: 53/53 (eradication 100%; 95% CI 93.3–100) Azithromycin group: 0/51 (0%; 95% CI: 0–7.0) v erythromycin group: 0/53 (0%; 95% CI: 0–6.7) Azithromycin v erythromycin groups: Overall incidence of GI side effects was 18.8% v 41.2%; NNT = 4.46 Nausea (2.9% v 8.4%; 95% CI: –8.9% to 2.0%; NNT 18.1), vomiting (5.0% v 13.0%; 95% CI: –4.9% to 1.4%; NNT = 12.5) Diarrhoea (7.1% v 11.8%; 95% CI: –9.0% to –0.3%; NNT = 21.2) No serious adverse events were recorded in either group 90% in the azithromycin group v 55% in the erythromycin group</td>
<td>Group assignment not blinded after randomisation Positive Nasopharyngeal (NP) cultures for pertussis were found in 58/239 (azithromycin group) and in 56/238 (erythromycin group) Post treatment cultures not available on all subjects</td>
</tr>
<tr>
<td>Label and Mehra</td>
<td>153 children (<16 y) with clinical symptoms of pertussis received either clarithromycin 7.5 mg/kg/dose twice a day for 7 days (n = 76) or erythromycin (13.3 mg/kg/dose three times a day for 14 days (n = 77)</td>
<td>Prospective randomised single blind trial (level 1b)</td>
<td>Bacteriologic eradication; Negative post treatment cultures</td>
<td>Negative post treatment cultures recorded in 31/31 on clarithromycin (100%; 95% CI: 88.8–100%) v 22/33 with erythromycin (66%; 95% CI: 78.1–99.9%)</td>
<td>35/76 in the clarithromycin group and 27/77 in the erythromycin group had positive cultures of B pertussis 90% of subjects were appropriately immunised against pertussis</td>
</tr>
<tr>
<td>Pichichero et al</td>
<td>34 subjects (29 culture positive and 5 per positive) were all given azithromycin (10 mg/kg on day 1 followed by 5 mg/kg once a day for 4 more days)</td>
<td>Prospective, open labelled, non comparative trial (level 2b)</td>
<td>Bacteriologic eradication; Negative cultures/PCR at days 2–3 of treatment and days 14–21 post treatment</td>
<td>1/34 (3%) had positive cultures at 2–3 days on treatment Bacteriologic eradication 97% at 2–3 days and 100% by 14–21 days after starting treatment</td>
<td>Study group heterogeneous. No subset analysis available 5 of the 34 subjects were adults (parents of children), 12 were between 10–20 y of age and 17 were from the age of 6 mth to 10 y</td>
</tr>
<tr>
<td>Bace et al</td>
<td>37 subjects with culture proven pertussis. Mean age of patients 7.5 mfh (range 2–18 mfh). 60% of them were not immunised against pertussis. All received azithromycin. Dose: 10 mg/kg on day 1 followed by 5 mg/kg once a day for a day for 4 more days (n = 17) v 10 mg/kg once daily for 3 days only (n = 20)</td>
<td>Prospective, open labelled, non-comparative trial (level 2b)</td>
<td>Bacteriologic eradication; Negative cultures on day 7, 14 after commencement of treatment. Relapse: Positive cultures on day 21 after start of treatment</td>
<td>Positive cultures on day 7. 2/19 in the 3 day group (10.5%) v 0/16 in the 5 day group. 100% bacterial eradication was seen on day 14 (0/16 v 0/16) in both groups 1/14 patients on the 3 day course (7.1%). None on the 5 day course Transient increase in liver enzyme ALT noted in up to 20.6% of all subjects</td>
<td>Allocation criteria to either regime unclear</td>
</tr>
<tr>
<td>Aoyama et al</td>
<td>17 patients (0–13 y) with culture proven pertussis 8/17 received azithromycin (10 mg/kg once a day for 5 days) while 9/17 received clarithromycin (10 mg/kg/day in two divided doses for 7 days). Each study subject was matched with two historical controls treated with erythromycin (40–50 mg/kg/day in three divided doses for 14 days) 58.8% of subjects were not immunised against pertussis</td>
<td>Two separate open labelled trials using historical controls (level 4)</td>
<td>Bacterial eradication: negative culture on 1 week after treatment Relapse: positive culture at 2 weeks after treatment</td>
<td>8/8 with azithromycin (100%, 95% CI: 65.8–100%) v 13/16 (81%, 95% CI: 54.4–96%) among controls given erythromycin 9/9 with clarithromycin (100%, 95% CI: 71.1–100%) v 16/18 (88.8%, 95% CI: 65.3–98.6%) among controls given erythromycin None in either study or control groups</td>
<td>Historical controls Allocation criteria to medications unclear Small study group</td>
</tr>
</tbody>
</table>
A significant reduction in adverse gastrointestinal side effects and a better compliance have been shown. No serious side effects have been observed with these agents so far. Transient elevation in alanine aminotransferase (ALT) has been shown in one study.

Regarding prophylaxis, the current UK guideline is to administer a seven day course of erythromycin, if a clinically suspected or confirmed case of pertussis is identified. The aim is to protect those at risk from pertussis: infants, especially neonates; all household contacts who are unimmunised; and contacts who are 5 years or older if they did not receive a preschool pertussis booster. There is no evidence of any benefit from chemoprophylaxis given more than 21 days from the date of onset of the primary case. Unimmunised or partially immunised cases and contacts should complete their course of vaccine. Clarithromycin and azithromycin are potential, but not proven alternatives to erythromycin for prophylaxis at present.

See table 4.

REFERENCES