Growth in children with *Helicobacter pylori* infection and dyspepsia

M R Sood, S Joshi, A K Akobeng, J Mitchell, A G Thomas

Aims: To compare the height, weight, and body mass index (BMI) of children presenting with dyspeptic symptoms and *Helicobacter pylori* infection, to those with dyspepsia but without the infection.

Methods: A retrospective chart review of 257 children was performed. 13C urea breath test was performed to detect *H pylori* infection; weight and height were recorded and BMI was calculated. Weight, height, and BMI SD scores were determined using the 1990 UK normative data. The Index of Multiple Deprivation 2004 (IMD 2004) scores, which measure deprivation at small area level, were calculated from the patients’ postcodes.

Results: Ninety seven of the 257 children were H pylori positive. The mean age at diagnosis and presenting symptoms of H pylori positive and negative patients were similar. The mean IMD 2004 scores for children with *H pylori* infection were significantly higher compared to H pylori negative patients, suggesting that children with the infection came from relatively more deprived areas. The mean weight and height SD score were significantly lower for children with *H pylori* infection compared to those without. However, this difference was no longer significant after adjusting for socioeconomic deprivation and ethnic differences between the groups.

Conclusion: Children with dyspepsia and *H pylori* infection were shorter and lighter than patients with similar symptoms but no infection. The differences in anthropometry may be due to socioeconomic and ethnic factors rather than *H pylori* infection.

Infection by *Helicobacter pylori* plays a causal role in several diseases including chronic gastritis, peptic ulcer disease, gastric adenocarcinoma, and lymphoma in adults. The infection is usually acquired in childhood, the consequences of infection in children are not well understood. The majority have no symptoms and peptic ulcer disease is relatively rare in childhood. Chronic gastritis associated with *H pylori* infection has been reported but the relation with dyspepsia is still controversial. Some authors have investigated the role of *H pylori* in extra gastroduodenal diseases; one such association is with short stature.

A Korean study suggested that *H pylori* infection in association with iron deficiency anaemia might suppress linear growth. In a recent study, Bravo and colleagues followed 347 Colombian children who did not have *H pylori* at the time of entry into the study. One hundred and five children acquired *H pylori* infection during follow up and showed significant slowing of growth velocity. The effect of *H pylori* on growth velocity did not vary with socioeconomic status or over crowding. However, other investigators have suggested that growth suppression reported in children with *H pylori* infection could be due to socioeconomic, genetic, and environmental factors.

Although the causal role of *H pylori* infection in children with recurrent abdominal pain is debatable, an increased incidence of infection in children with dyspepsia has been reported. It has also been hypothesised that *H pylori* associated dyspepsia may reduce nutrient intake and cause growth suppression. In this study, we have reviewed the growth parameters of children with dyspepsia referred to the Regional Paediatric Gastroenterology unit in Manchester, UK who were investigated for *H pylori* infection as part of their investigative work up.

METHODS

A retrospective review of hospital notes of all children presenting with dyspepsia between January 2001 and June 2004, who also had a 13C urea breath test, was performed. Dyspepsia was defined as upper or central abdominal pain, with associated symptoms such as retrosternal pain, nausea, vomiting, and/or loss of appetite, of at least two weeks’ duration. Three hundred and twenty five patients were identified. The hospital notes of 50 patients were not available or had inadequate information recorded and were therefore excluded. A paediatric gastroenterology team had evaluated these patients; 18 had associated conditions which can affect growth, such as inflammatory bowel disease, Alagilles syndrome, chronic asthma, and treatment with corticosteroids, and were also excluded. Following assessment by a gastroenterologist, and when clinically indicated, anti-endomyseal antibodies were obtained, but coeliac disease was not excluded in every child. Two hundred and fifty seven patients were finally included in this retrospective study. Fifty one patients underwent endoscopic examination for abdominal pain; two patients had gastric ulcer, one duodenal ulcer, and 10 had endoscopic evidence of *H pylori* associated gastritis.

13C urea breath test was performed using a standard protocol; after a six hour fast, two baseline breath samples were collected. The child was then given 200 ml of orange juice, followed by 30 ml of solution containing 75 mg of 13C urea powder. Two breath samples were taken 30 minutes after drinking the test solution. These were analysed using an isotope mass spectrometer, which determines the 13C/12C ratio in the breath sample. The test was considered positive if the difference in the baseline value and 30 minute value of 13C/12C exceeded 4.0%. Antibiotic treatment was discontinued at least two weeks prior to and acid suppressant therapy at least a week prior to the test.

All patients had their weight and height recorded at the time of the 13C urea breath test. Body mass index (BMI) was calculated (BMI = weight/height2). Height, weight, and BMI standard deviation (SD) scores were calculated using the 1990 UK normative data supplied by the Child Growth...
Information regarding presenting symptoms, duration of symptoms, age at presentation, and change in symptoms following *H. pylori* eradication was also collected.

The Index of Multiple Deprivation 2004 (IMD 2004), which is a measure of deprivation at the small area level, was calculated for 225 patients in whom information regarding postcode was available in the hospital notes. The IMD 2004 contains seven domains of deprivation: income deprivation; employment deprivation; health deprivation and disability; education, skills, and training deprivation; barriers to housing and services; living environment deprivation; and crime. The domains and the IMD 2004 are presented at the level of Super Output Area (SOA) Lower Level. These are relatively small areas of around 1500 people. There are 32 482 Lower Level SOAs in England. Each SOA has been assigned a score and a rank for the IMD 2004. Based on the patient postcodes the IMD 2004 scores for the area they lived in were calculated. The IMD 2004 deprivation scores range from 1 to 100; the higher the scores the more deprived is the area.

Table 1	Age, clinical characteristics, and IMD 2004 scores of children with and without *H. pylori* infection		
H. pylori negative	**H. pylori positive**	**p value**	
n = 160	**n = 97**		
Mean (SD) age in years	10.96 (3.1)	11.49 (3.3)	NS
Gender: male/female	85/75	53/44	
Ethnic group	133	64	0.004
White Caucasian	25	30	
South Asian			
Mean (SD) IMD 2004 score	30.66 (19.88)	38.90 (19.90)	0.003

Five patients were of Afro-Caribbean or Chinese ethnicity.

Abdominal pain. The frequency of various symptoms in *H. pylori* positive and negative group of patients is presented in table 2. The prevalence of *H. pylori* infection was higher in patients of South Asian descent (55%) compared to white Caucasian patients (33%) (table 1).

The weight, height, and BMI SD score of the two groups of patients are summarised in table 3. The mean weight and height SD scores were significantly lower for patients with *H. pylori* infection but BMI SD scores were not. However, after controlling for covariates of socioeconomic deprivation and ethnicity, the difference in height and weight SD scores were no longer significant (table 3).

All patients with *H. pylori* infection were treated with a two week course of omeprazole, clarithromycin, and metronidazole. Seventy four patients had a repeat 13C urea breath test and the infection was successfully eradicated in 45 patients (57%) after the first course of triple therapy. Fourteen patients with *H. pylori* infection in our study had a full blood count; as a group they did not have microcytic anaemia suggestive of iron deficiency.

RESULTS

Ninety seven patients were *H. pylori* positive and 160 were negative. Table 1 summarises the age, gender, ethnic background, and deprivation scores (IMD 2004) of the *H. pylori* positive and negative group. The mean duration of symptoms for *H. pylori* positive patients was 14.1 (range 2–84) months; it was 15.2 (range 2–72) months for the negative group. As expected from the study design the commonest symptom in *H. pylori* positive and negative patients was of limited power of our study. This may become obvious in a

Table 2	Presenting symptoms of patients with and without *H. pylori* infection		
H. pylori negative	**H. pylori positive**	**Information not available**	
n = 160	**n = 97**		
Abdominal pain	147/160 (91%)	81/95 (85%)	2
Retrosternal pain	29/84 (33%)	16/66 (24%)	107
Nausea	56/160 (35%)	55/90 (61%)	7
Vomiting	104/160 (65%)	46/89 (52%)	8
Loss of appetite	65/143 (46%)	23/72 (32%)	42

DISCUSSION

The 13C urea breath test is a validated technique for diagnosing gastric *H. pylori* infection; reported sensitivity and specificity of the test is over 90%. Thirty eight per cent of patients with dyspepsia seen at our hospital during the three and a half year study period had associated *H. pylori* infection. Although the causal relation between *H. pylori* and abdominal pain in the absence of peptic ulcer disease is debatable, increased incidence of *H. pylori* infection has been reported in children with abdominal pain. It can therefore be argued that this group of children may be especially vulnerable to growth suppression in association with *H. pylori* infection. Our results suggest that children with dyspepsia and *H. pylori* infection are shorter and lighter compared to children without the infection. However, this was not significant after adjusting for confounding factors such as socioeconomic status and ethnic differences between the two groups of patients. Our study may not have been sufficiently powered to study the effect of socioeconomic status and ethnic differences on height SD scores in patients with and without the infection, and we may have failed to detect this because of limited power of our study. This may become obvious in a
The prevalence of \textit{H pylori} infection was more prevalent in children from lower socioeconomic status across all ethnicities and children with the infection were shorter compared to those without. Socioeconomic status but not \textit{H pylori} infection was the major contributory factor for difference in height between the two groups.

What is already known on this topic

- Previous studies have reported growth suppression in children with \textit{H pylori} infection living in developing countries, in pubertal girls, and in association with iron deficiency.

What this study adds

- \textit{H pylori} infection was more prevalent in children from lower socioeconomic status across all ethnicities and children with the infection were shorter compared to those without.

Acknowledgements

We would like to thank Andy Vail, Lecturer, Biostatistics Group, University of Manchester for his help and advice with data analysis, and Neil Bendel, Health Intelligence Specialist, Manchester Joint Health Unit for calculating the deprivation scores.

Competing interests

None.

References

bmjupdates+

bmjupdates+ is a unique and free alerting service, designed to keep you up to date with the medical literature that is truly important to your practice. bmjupdates+ will alert you to important new research and will provide you with the best new evidence concerning important advances in health care, tailored to your medical interests and time demands.

Where does the information come from?
bmjupdates+ applies an expert critical appraisal filter to over 100 top medical journals. A panel of over 2000 physicians find the few ‘must read’ studies for each area of clinical interest.

Sign up to receive your tailored email alerts, searching access and more...

www.bmjupdates.com