Food allergy in childhood

We thank Colver, MacDougall, and Cant for their response to our paper. The message underpinning our paper was that severe allergic reactions to foods are not uncommon as MacDougall et al suggested. However, we are not comparing like with like and the problem lies in the definition of a severe food reaction. MacDougall et al only identified the extreme end of the clinical spectrum (children who have suffered cardiorespiratory arrest, received at least two doses of epinephrine (adrenaline), a fluid bolus, inotropic support, or at least two doses of nebulised bronchodilator—all unvalidated and unrefereere outcome measures). Having set the threshold for inclusion so high, it is hardly surprising that the incidence of this extreme outcome is so low. What was the authors’ purpose in identifying this extreme population? If it was reassurance about the low incidence of life threatening reactions, then it should be appreciated that in a recent American series, 8/10 children who died of food allergy had previously reacted to the food that caused the fatality. Also, in a UK survey, 21/92 (23%) of peanut anaphylaxis characterised by airway narrowing, atelectasis and collapse. This number would be much larger if all foods were considered, and this effect is repeated for other allergy centres around the country. These children with severe reactions are derived from approximately 1/30th of the UK population. The majority were referred directly from their general practitioner and had had no contact with a paediatrician, and therefore would not have been notified to the BPSU. The fact that the number of inpatient admissions in MacDougall’s paper matched that from a previous survey is irrelevant, as neither considers the large number of children who present to allergy outpatient clinics via their general practitioner.

We present data to estimate the incidence of those severe reactions that were missed by MacDougall’s paper, using a different and more appropriate definition of severity. We compare them to MacDougall’s estimate of 0.19 severe food reactions per 100 000 children per year. We have data from 791 children with nut allergy, 58 of whom had at least one severe nut induced reaction; the data were collected over six years, giving an incidence of at least 1.93 severe reactions per 100 000 children per year for nut allergy alone: a figure 10-fold higher than MacDougall’s data for all food allergy. This estimate is a minimum, as each child has had at least one severe reaction (possibly more) and is for nut allergy alone, rather than all food allergies.

The estimate of the incidence of deaths due to food allergy estimated by MacDougall et al is an underestimate, as the authors did not consider asthmatic deaths, where no allergenic cause was suspected and we thank Colver for asking about this. There are 60-fold more deaths due to asthma, than those identified as due to a severe food reaction by MacDougall et al. If only a few of these were due to food allergy, it would alter the figures dramatically.

Colver has cited Bock’s important series of fatal food reactions, which showed 80% (8/10) of deaths in under 16 year olds were due to peanuts or nuts, the youngest being 2 years old. It is not clear, however, why we should be reassured by MacDougall’s finding of no peanut allergy induced deaths in children under 13 years. Do the authors not consider tree nut allergy induced deaths in children under 13 years? Do the authors not consider tree nut allergy induced deaths in children under 13 years? Do the authors not consider tree nut allergy induced deaths in children under 13 years? Do the authors not consider tree nut allergy induced deaths in children under 13 years? Do the authors not consider tree nut allergy induced deaths in children under 13 years?

Finally, we agree that the issues surround- ing provision of adrenaline autoinjectors require good data on the clinical features and natural history of nut allergy. However, we question the need to consider adrenaline autoinjectors in isolation is missing the point. The provision of adrenaline autoinjectors should be seen in the broader context of a comprehensive management plan derived from food allergy. Children with mild food allergy reactions can go on to have more severe reactions. We have shown that enrolment of children with nut allergy of all severities in such a management plan, consisting of twice weekly injections and routine skin testing, resulted in a reduced number and severity of further reactions. Colver has emphasised the efficacy of this treatment plan in children, by highlighting that only three adults (aged 27–41 years) and no children had further severe reactions.

A T Clark, P W Ewan
Addenbrooke’s Hospital, Cambridge, UK;
andrew.clark@addenbrookes.nhs.uk

References

1 Clark AT, Ewan PW. Food allergy in childhood: have the dangers been underestimated? Arch Dis Child 2003;88:79–81.

Symptomatic vitamin D deficiency among non-Caucasian adolescents living in the United Kingdom

We have previously drawn attention to a resonance of vitamin D deficiency in young children of South Asian (Indian, Pakistani, and Bangladeshi) and Middle Eastern origin, living in the UK. We now describe nine (one male) non-Caucasian, adolescents (age 11–17 years) who presented with symptomatic vitamin D deficiency between 1997 and 2002. Table 1 summarises their ages, ethnic origins, clinical symptoms, signs, and relevant biochemical findings at presentation. All presented with symptoms of vitamin D deficiency, which included lower limb pains, difficulty in walking or climbing stairs, carpopedal spasms, and hypocalcaemic convulsions. Clinical signs included positive Chvostek sign, inability to stand up unaided from a squatting position due to proximal myopathy, bowed legs (genu varum), and knock-knees (genu valgum). Three patients (cases 1, 6, 9) had radiological changes of vitamin D deficiency with widening and fraying of metaphyses, but these changes were not as severe as those seen in toddlers with vitamin D deficiency rickets. As shown in table 1, biochemical features of the disease included low serum concentrations of 25-hydroxycholecalciferol (25(OH)D; a measure of an individual’s vitamin D status), increase

References

1. Clark AT, Ewan PW. Food allergy in childhood: have the dangers been underestimated? Arch Dis Child 2003;88:79–81.

Symptomatic vitamin D deficiency among non-Caucasian adolescents living in the United Kingdom

We have previously drawn attention to a resonance of vitamin D deficiency in young children of South Asian (Indian, Pakistani, and Bangladeshi) and Middle Eastern origin, living in the UK. We now describe nine (one male) non-Caucasian, adolescents (age 11–17 years) who presented with symptomatic vitamin D deficiency between 1997 and 2002. Table 1 summarises their ages, ethnic origins, clinical symptoms, signs, and relevant biochemical findings at presentation. All presented with symptoms of vitamin D deficiency, which included lower limb pains, difficulty in walking or climbing stairs, carpopedal spasms, and hypocalcaemic convulsions. Clinical signs included positive Chvostek sign, inability to stand up unaided from a squatting position due to proximal myopathy, bowed legs (genu varum), and knock-knees (genu valgum). Three patients (cases 1, 6, 9) had radiological changes of vitamin D deficiency with widening and fraying of metaphyses, but these changes were not as severe as those seen in toddlers with vitamin D deficiency rickets. As shown in table 1, biochemical features of the disease included low serum concentrations of 25-hydroxycholecalciferol (25(OH)D; a measure of an individual’s vitamin D status), increase

References

1. Clark AT, Ewan PW. Food allergy in childhood: have the dangers been underestimated? Arch Dis Child 2003;88:79–81.

Symptomatic vitamin D deficiency among non-Caucasian adolescents living in the United Kingdom

We have previously drawn attention to a resonance of vitamin D deficiency in young children of South Asian (Indian, Pakistani, and Bangladeshi) and Middle Eastern origin, living in the UK. We now describe nine (one male) non-Caucasian, adolescents (age 11–17 years) who presented with symptomatic vitamin D deficiency between 1997 and 2002. Table 1 summarises their ages, ethnic origins, clinical symptoms, signs, and relevant biochemical findings at presentation. All presented with symptoms of vitamin D deficiency, which included lower limb pains, difficulty in walking or climbing stairs, carpopedal spasms, and hypocalcaemic convulsions. Clinical signs included positive Chvostek sign, inability to stand up unaided from a squatting position due to proximal myopathy, bowed legs (genu varum), and knock-knees (genu valgum). Three patients (cases 1, 6, 9) had radiological changes of vitamin D deficiency with widening and fraying of metaphyses, but these changes were not as severe as those seen in toddlers with vitamin D deficiency rickets. As shown in table 1, biochemical features of the disease included low serum concentrations of 25-hydroxycholecalciferol (25(OH)D; a measure of an individual’s vitamin D status), increase
of serum alkaline phosphatase activity for the age (except in cases 2, 5, and 7), secondary hyperparathyroidism leading to hypophosphataemia (except in cases 7 and 8), and formation of normal, or supranormal serum concentrations of 1,25 dihydroxycholecalciferol (except in case 5). The presenting symptoms in all patients resolved after treatment with oral vitamin D. However, unlike in younger children, genu valgum or genu varum (fig) do not fully correct after treatment with vitamin D after the long bone epiphyses have closed; the residual deformities require surgical correction.

Vitamin D is necessary for adequate bone mineralisation and its deficiency results in rickets in children and osteomalacia in older adolescents and adults. In humans, the main source of vitamin D is that produced by the action of solar ultraviolet light B radiation acting on 7-dehydrocholesterol in skin. Small amounts are also derived from dietary sources: oily fish, eggs, and fortified foods, such as margarine and breakfast cereals. The Committee on Medical Aspects of Food Policy (COMA) 3 recommends that all pregnant women, lactating mothers, and children up to the age of 5 years who are at risk of vitamin D deficiency should be encouraged to take supplements. However, there are no recommendations for vitamin D supplementation in adolescents, although the COMA does recommend provision of vitamin D supplements to vulnerable older children.

Adolescence is a critical period of skeletal mineralisation, when over 35% of the peak bone mass (PBM) of a mature adult is accrued during the four years surrounding adolescence. Although many factors influence bone accretion during the period of peak bone mineral accrual, it is widely accepted that subjects who attain a lower PBM at maturity have a higher risk of sustaining osteoporotic fractures in later life. Adolescence is considered a period of increased risk of vitamin D deficiency during this period might compromise the acquisition of PBM and thus potentially increase the risk of osteoporosis in later life. Therefore, vitamin D deficiency during adolescence is an important consideration for the prevention of osteoporosis in later life. Thus, inadequate skeletal mineralisation secondary to vitamin D deficiency during this period might compromise the acquisition of PBM and thus potentially increase the risk of osteoporosis in later life. Therefore, vitamin D deficiency during adolescence is an important consideration for the prevention of osteoporosis in later life. Therefore, vitamin D deficiency during adolescence is an important consideration for the prevention of osteoporosis in later life.

Figure 1: Severe knock-knee (genu varum) deformity in case 8.

<table>
<thead>
<tr>
<th>Case</th>
<th>Age (y) and gender</th>
<th>Ethnic origin</th>
<th>Symptoms</th>
<th>Signs</th>
<th>Corrected Ca (mmol/l) (2.15–2.65)</th>
<th>P (mmol/l) (0.7–1.4)</th>
<th>ALP* (IU/l)</th>
<th>PTH (pg/ml) (10–60)</th>
<th>25(OH)D† (ng/ml) (5–30)</th>
<th>1,25(OH)2D (pg/ml) (20–50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13 ♂</td>
<td>Iranian</td>
<td>Pain in ankles and knees</td>
<td>-ve Chvostek’s sign†</td>
<td>1.41</td>
<td>1.31</td>
<td>1685</td>
<td>418</td>
<td><2.0</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>17 ♂</td>
<td>Indian</td>
<td>Pain in back, thighs, knees, and calves, Difficulty walking, climbing stairs and running</td>
<td>Proximal myopathy‡</td>
<td>1.89</td>
<td>0.61</td>
<td>519</td>
<td>518</td>
<td><2.0</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>14 ♂</td>
<td>Indian</td>
<td>Pain in hips, knees, and calves</td>
<td>Proximal myopathy‡, knock-knee, with 7 cm separation of medial malleoli</td>
<td>1.98</td>
<td>0.94</td>
<td>1871</td>
<td>146</td>
<td>10</td>
<td>127</td>
</tr>
<tr>
<td>4</td>
<td>11 ♂</td>
<td>Afghanistani</td>
<td>Pain in knees, difficulty walking</td>
<td>Proximal myopathy‡, bowed legs, with 5 cm separation of upper medial tibial condyles, -ve Chvostek’s sign‡</td>
<td>2.25</td>
<td>0.7</td>
<td>2484</td>
<td>278</td>
<td>3.6</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>16 ♂</td>
<td>Pakistani</td>
<td>Muscle cramps, facial twitches, stridor, carpopedal spasms, and convulsions</td>
<td>Proximal myopathy‡, -ve Chvostek’s sign‡</td>
<td>2.00</td>
<td>0.72</td>
<td>310</td>
<td>180</td>
<td><2.0</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>12 ♂</td>
<td>Pakistani</td>
<td>Non-specific limb pains</td>
<td>Proximal myopathy‡, -ve Chvostek’s sign‡</td>
<td>2.00</td>
<td>0.72</td>
<td>1107</td>
<td>222</td>
<td>3.0</td>
<td>72</td>
</tr>
<tr>
<td>7</td>
<td>15 ♂</td>
<td>Pakistani</td>
<td>Severe carpopedal spasms</td>
<td>Proximal myopathy‡, -ve Chvostek’s sign‡</td>
<td>1.48</td>
<td>1.43</td>
<td>723</td>
<td>390</td>
<td>2.2</td>
<td>83</td>
</tr>
<tr>
<td>8</td>
<td>14 ♂</td>
<td>Pakistani</td>
<td>Carpopedal spasms, pain in knees, difficulty climbing stairs</td>
<td>Severe knock-knee deformity with 20 cm separation of medial malleoli, -ve Chvostek’s sign‡</td>
<td>1.78</td>
<td>1.27</td>
<td>3688</td>
<td>1173</td>
<td><2.0</td>
<td>Lost</td>
</tr>
<tr>
<td>9</td>
<td>14 ♂</td>
<td>Pakistani</td>
<td>Pain in knees, difficulty climbing stairs</td>
<td>Severe knock-knee deformity with 22 cm separation of medial malleoli, -ve Chvostek’s sign‡</td>
<td>1.76</td>
<td>0.80</td>
<td>10202</td>
<td>703</td>
<td><2.0</td>
<td>28</td>
</tr>
</tbody>
</table>

ALP, alkaline phosphatase; PTH, parathyroid hormone.
* Serum ALP concentrations vary with age and stage of pubertal development.
†Serum 25(OH)D concentrations <5 ng/ml are associated with rickets or osteomalacia and those >5 ng/ml but <15 ng/ml are considered to be insufficient.
‡Inability or difficulty in standing up unaided from a squatting position.
§Twitching of the facial muscles in response to gentle tapping over the skin anterior to the earlobe and below the zygomatic arch.

Table 1: Demographic and clinical data of the patients.
Milk fats and asthma

Studies performed mainly on adults have suggested that diet may influence asthma. Fruits, vitamin C, vitamin E, and beta-carotene may have a protective effect. Now a birth cohort study in the Netherlands (AH Wijga and colleagues. Thorax 2003;58:567–72) has provided evidence that in pre-school children the consumption of products containing milk fat might be protective.

The cohort consisted of 2978 children born in three different regions of the country between July 1996 and October 1997. Dietary data were collected when the children were 2 years old and related to data from postal questionnaires on respiratory symptoms at 3 years of age. Recent asthma at age 3 years was less prevalent (3.4% vs 5.6%) in children who at age 2 years had consumed full cream milk every day compared with other children. A similar reduction in recent asthma (1.5% vs 5.1%) was found in children who ate butter every day. The prevalence of recent wheeze was also reduced by daily consumption of milk products (13.7% vs 18.4%) or of butter (7.7% vs 15.4%). Rates of asthma or wheeze were also reduced with daily consumption of brown bread but were not affected by consumption of fruits, vegetables, margarine, or fish.

It is possible that the observed changes in intake of milk fats may be indicators of other aspects of lifestyle but the authors of this paper have been unable to identify such confounding factors. It is also possible, but unproved, that increased intake of saturated fat and reduced intake of polyunsaturated fatty acids might protect against the development of atopy.