Towards evidence based medicine for paediatricians

Edited by Bob Phillips

In order to give the best care to patients and families, paediatricians need to integrate the highest quality scientific evidence with clinical expertise and the opinions of the family. Archimedes seeks to assist practising clinicians by providing "evidence based" answers to common questions which are not at the forefront of research but are at the core of practice. In doing this, we are adapting a format which has been successfully developed by Kevin Macaw-Jones and the group at the Emergency Medicine Journal—"BestBets".

A word of warning. The topic summaries are not systematic reviews, through they are as exhaustive as a practising clinician can produce. They make no attempt to statistically aggregate the data, nor search the grey, unpublished literature. What Archimedes offers are practical, best evidence based answers to practical, clinical questions.

The format of Archimedes may be familiar. A description of the clinical setting is followed by a structured clinical question. (These aid in focusing the mind, assisting searching, and gaining answers.) A brief report of the search used follows—this has been performed in a hierarchical way, to search for the best quality evidence to answer the question.

Hierarchical searches

Archimedes wants to answer clinical questions using a hierarchical search process. What exactly does this mean? And why is it important anyway?

The hierarchical search aims to look for the best quality evidence first, and work downwards if insufficient research is discovered. Secondary sources are looked through in the first instance. These sources have done some of the work of critical appraisal already. An excellent secondary resource is the Cochrane Library. This database contains a large number of systematic reviews of the effects of healthcare interventions, both "Cochrane" reviews, and in collaboration with the NHS York Centre for Reviews and Dissemination, other published systematic reviews. Other secondary sources include the EBM Journal, which takes good quality studies published in other journals, creates an independent abstract of the paper, and is accompanied by a critical analysis and commentary. Some guidelines are excellent sources of information, and the authors may have done the job of collating and appraising all relevant evidence for you.

Searching in secondary sources is relatively easy: the Cochrane library is all in one place, EBM Journal lives elsewhere, and a very large number of guidelines are available at the redeveloped (US) National Guidelines Clearinghouse.

Where a secondary source doesn’t provide enough of an answer, Archimedes authors look back to the primary literature and perform a systematic, but limited, review of the studies they find. For interventions, randomised controlled trials (RCTs) are the preferred source of evidence. For medical interventions, there are empirical observations which show that non-randomised studies tend to exaggerate treatment effects. If these can’t be found, it may be useful to look for large cohort studies. These have many more problems than RCTs, with difficulty assessing the presence of extraneous (confounding) factors which provide an alternative explanation for the outcomes observed. However, they are more likely to estimate the true effect than most case-control studies. In turn, a case-control study has a jump on the case study (which is, after all, a posh way of saying "anecdote").

How do you search for these studies though? Typing "heart attack" into Medline may induce one. There are a few ways to assist the practicing clinician in their searching, by filtering out methodologically poor studies and presenting those with a greater chance of success. If you have the opportunity, many health information specialists (a.k.a. librarians) run courses on searching for clinical information. Alternatively you might like to look at the Clinical Queries section of PubMed or the superb "SumSearch" engine. Good luck.

References

1 http://www.cochranelibrary.com/cochrane/
2 http://www.evidencebasedmedicine.com
3 http://www.guidelines.gov
6 http://sumsearch.uthscsa.edu
Should a prolonged or short course of indomethacin be used in preterm infants to treat patent ductus arteriosus?

Report by Sachin Shah, Hospital for Sick Children and University of Toronto; sshahdoc@hotmail.com

A 27 week gestation infant is diagnosed to have a significant patent ductus arteriosus (PDA) on echocardiography on day 2. The infant is ventilator dependent. You decide to treat with indomethacin. The resident suggests that it would be better if prolonged indomethacin therapy could be administered over 5–7 days to ensure that the PDA remains closed. What evidence did she have?

Structured clinical question

In preterm infants with patent ductus arteriosus [patient], is prolonged course indomethacin [intervention] better than short course conventional therapy [comparator] in preventing recurrences and decreasing the need for surgical ligation [outcomes]?

Search strategy and outcome

Clinical bottom line

- The evidence is inconclusive as to which is the superior regimen.
- The prolonged course regimen may have a role in those with borderline impairment of renal function.

Commentary

The five RCTs comparing prolonged versus short course indomethacin differ in the dosage regimes (for both prolonged and short course groups), diagnosis of PDA, and onset of treatment. Also there is a wide variation in the gestational age and birth weight.

In all but one study (Rennie et al), PDA was diagnosed by echocardiography. In two studies (Lee et al; Rhodes et al), PDA was detected on echocardiographic screening at predetermined intervals, while in two studies (Tammela et al; Hammerman et al), a clinically symptomatic PDA was confirmed on echocardiography.

There is significant “in between study heterogeneity” as far as outcomes like failure of PDA closure, need for surgical ligation, recurrence of PDA, and mortality rates are concerned.

In the majority of studies, the incidence of renal side effects was less in the prolonged indomethacin group compared to the short course group. There were no significant differences in the other co-morbidities.

In theory, short term indomethacin therapy suppresses dilator prostanooids and facilitates ductal constriction. This transient suppression may not allow sufficient time for anatomic ductal closure in many infants. This may be especially true for the extremely low birth weight infant whose PDA is more sensitive to prostaglandins and whose PDA does not constrict as tightly as the more mature infant. Also the ductus tends to retain its sensitivity for a longer duration, making it more susceptible to reopening.

This theoretical advantage has not translated into clinical practice in all the studies. The evidence is inconclusive as to which is the superior regimen. Further trials are needed to determine the optimum regimen and dose of indomethacin, especially in extremely low birth weight infants (<1000 g). A four arm trial where infants are randomised and allocated at birth, either to prolonged therapy or to short course therapy, may be the most efficient trial design. Within the prolonged and short course treatment arms, the infants would then be randomised to receive indomethacin on echocardiographic determination of PDA within the first seven days or when the PDA becomes clinically symptomatic. The outcomes assessed should be mortality and need for surgical ligation.

REFERENCES

Table 2 Prolonged versus short course indomethacin in treatment of patent ductus arteriosus in preterm infants

<table>
<thead>
<tr>
<th>Citation</th>
<th>Study group</th>
<th>Study type [level of evidence]</th>
<th>Outcome</th>
<th>Key results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhodes et al (1988)</td>
<td>70 preterm infants <1500 g with echocardiographically diagnosed PDA were randomised to either prolonged course indomethacin over 1 week or to short course (2 doses of indomethacin; n = 36). All infants were given 2 doses of indomethacin 0.15 mg/kg 12 hours apart. The prolonged course group (n = 34) received additional 0.1 mg/kg once daily hourly x 5 days.</td>
<td>Prospective randomised controlled trial (level 1b)</td>
<td>Closure after first course</td>
<td>RR 1.11 (95% CI 0.77 to 1.61); RD No blinding of intervention.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Recurrence of PDA</td>
<td>RR 0.06 (95% CI 0.01 to 0.29); RD No differences in mortality rates.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Need for surgical ligation</td>
<td>RR 0.06 (95% CI 0.01 to 0.29); RD No differences in mortality rates.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rennie and Cooke (1990)</td>
<td>Total of 121 infants <2500 g with clinical signs of PDA were randomised to receive either prolonged course indomethacin (0.2 mg/kg q 8 hourly x 6 days; n = 59) or short course (0.2 mg/kg q 24 hourly x 3 doses; n = 62).</td>
<td>Prospective randomised controlled trial (level 1b)</td>
<td>Closure after first course</td>
<td>RR 1.16 (95% CI 0.99 to 1.36); RD No blinding; Echocardiography was not used for assessment of PDA.</td>
<td>Double blind study.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Recurrence of PDA</td>
<td>RR 1.01 (95% CI 0.84 to 1.22); RD Higher mortality rate in the prolonged indomethacin group, not directly related to treatment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Need for surgical ligation</td>
<td>RR 1.12 (95% CI 0.95 to 1.32); RD Majority occurred after the first month.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hammerman and Aramburo (1990)</td>
<td>39 infants <1500 g with echocardiographically confirmed PDA were randomised to receive standard indomethacin therapy (0.2 mg/kg/dose 8 hourly), followed by either maintenance indomethacin (0.2 mg/kg once daily x 5 days; n = 20) or equivalent volume of placebo for 5 days (n = 19).</td>
<td>Prospective randomised controlled trial (level 1b)</td>
<td>Closure after first course</td>
<td>RR 1.22 (95% CI 0.90 to 1.66); RD There was no increase in the toxic effects of indomethacin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Recurrence of PDA</td>
<td>RR 0.32 (95% CI 0.27 to 0.37); RD No increase in the toxic effects of indomethacin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Need for surgical ligation</td>
<td>RR 0.14 (95% CI 0.02 to 1.00); RD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tammela et al (1999)</td>
<td>61 infants of gestational ages 24–32 wk with a PDA confirmed with echocardiography were randomised to receive short course indomethacin (3 doses of 0.2, 0.1, and 0.1 mg/kg in 24 hours; n = 31) or prolonged course (0.1 mg/kg q 24 hourly x 7 days). Echocardiography was performed 3, 9, and 14 days after starting treatment.</td>
<td>Prospective randomised controlled trial (level 1b)</td>
<td>Closure after first course</td>
<td>RR 0.71 (95% CI 0.54 to 0.93); RD Only assessment was blinded.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Recurrences needing treatment</td>
<td>RR 1.03 (95% CI 0.37 to 2.85); RD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee et al (2001)</td>
<td>Infants <1500 g with a symptomatic PDA greater or equal to 1.5 mm on echocardiography were randomised to conventional indomethacin (0.2 mg/kg/dose q 12 hourly x 3 doses; n = 70) or prolonged low dose course indomethacin (0.1 mg/kg q 24 hourly x 6 days; n = 70).</td>
<td>Prospective randomised controlled trial (level 1b)</td>
<td>Closure after first course</td>
<td>Relative risk (RR) 1.02; 95% CI 0.87 to 1.27; risk difference (RD) 0.001; 95% CI 0.14 to 0.17; RD No blinding of intervention.</td>
<td>Intention to treat analysis. PDA diagnosis by echocardiography. No difference in mortality rates.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Need for surgical ligation</td>
<td>RR 0.82 (95% CI 0.27 to 1.39); RD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Is indomethacin or ibuprofen better for medical closure of the patent ductus arteriosus?

Report by
Erik N Swartz, Assistant Professor, Department of Pediatrics, University of Alberta, Edmonton, Canada; erikswartz@cha.ab.ca

A preterm baby of 28 weeks gestation with respiratory distress syndrome is admitted to the neonatal intensive care unit. On day 2 of life, the characteristic murmur of a patent ductus arteriosus (PDA) is heard, with the diagnosis confirmed by Doppler echocardiography. The attending neonatologist orders a course of indomethacin in an attempt to treat the PDA. The astute paediatric resident has just taken two tablets of ibuprofen to treat his post-call headache, and wonders whether this alternative non-steroidal anti-inflammatory drug might be just as efficacious, with less side effects.

Structured clinical question
In a preterm baby of gestational age less than or equal to 34 weeks [patient] is ibuprofen [intervention] compared with indomethacin [comparison intervention] equally efficacious at treating echocardiographically proven patent ductus arteriosus and have fewer side effects [outcomes]?

Search strategy and outcome
Search engine—Cochrane library: “ductus arteriosus, patent” and “indomethacin” and “ibuprofen” (MeSH-Terms); PubMed: “ductus arteriosus, patent” and “indomethacin” and “ibuprofen” (MeSH-Terms) limit to clinical trial.

Search results—two systematic reviews: nil relevant. Two protocols for a Cochrane review: one relevant. Nine clinical studies found, four of which were relevant. See table 1.

Commentary
All four studies were randomised, controlled trials; however, the methods of randomisation were not reported. All used cards in sealed envelopes as the system of allocation concealment. Furthermore, there is no evidence that neonatologists, nurses, or pharmacists were blinded in any study. Echocardiographers were blinded in two of the studies.

Each study clearly shows the equivalence of ibuprofen and indomethacin in the treatment of patent ductus arteriosus. In addition, three studies showed a significant increase in oliguria among patients treated with intravenous indomethacin, and two studies showed a significant increase in serum creatinine. No study showed a difference in death, necrotising enterocolitis, or progression of intracranial haemorrhage between the two groups. All trials used a “high” dose of ibuprofen.

Table 1 Ibuprofen versus indomethacin in the treatment of patent ductus arteriosus (PDA)

<table>
<thead>
<tr>
<th>Citation</th>
<th>Study group</th>
<th>Study type (level of evidence)</th>
<th>Outcome</th>
<th>Key results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lago et al (2002)</td>
<td>175 preterm neonates, GA < 34 wk, postnatal age 48–72 h with echo proven PDA. Very ill babies excluded. IBU (10 mg/kg iv [time 0]), 5 mg/kg iv [time 24,48 h]) v INDO (0.2 mg/kg iv q12 h x 3)</td>
<td>RCT (level 1b) Jadad score: 2</td>
<td>Echo proven closure of PDA.</td>
<td>IBU = INDO for closure of PDA. ARR = 0.043 [95% CI = 0.092 to 0.177] INDO more likely to produce oliguria: p = 0.017, NNH = 7 INDO resulted in higher post-treatment creatinine (mean 89 µmol/l, SD 24) than IBU (mean 81 µmol/l, SD 20): p = 0.03. Only echocardiographers were noted to be blinded. Allocation concealment by sealed envelope.</td>
<td></td>
</tr>
<tr>
<td>Van Overmeire et al (2000)</td>
<td>148 preterm neonates, GA < 34 wk, postnatal age 48–96 h with echo proven PDA. Very ill babies excluded. IBU (3 doses) v INDO (3 doses), same doses as above.</td>
<td>RCT (level 1b) Jadad score: 2</td>
<td>Echo proven closure of PDA.</td>
<td>IBU = INDO for closure of PDA. ARR = 0.041 [95% CI = 0.109 to 0.19] INDO more likely to produce oliguria: p = 0.03, NNH = 8 INDO resulted in higher post-treatment creatinine: p = 0.04. Only echocardiographers were noted to be blinded. Randomisation method not given. Allocation concealment by sealed opaque envelope.</td>
<td></td>
</tr>
<tr>
<td>Van Overmeire et al (1997)</td>
<td>40 preterm neonates, GA < 32 wk, postnatal age 48–72 h with echo proven PDA. Very ill babies excluded. IBU (3 doses) v INDO (3 doses), same doses as above.</td>
<td>RCT (level 1b) Jadad score: 2</td>
<td>Echo proven closure of PDA.</td>
<td>IBU = INDO for closure of PDA. ARR = 0.005 [95% CI = 0.208 to 0.308] INDO more likely to produce oliguria: p = 0.02, NNH = 3. IBU = INDO for post-treatment creatinine: p = 0.07 Randomisation method not given. Allocation concealment by sealed envelope. No blinding reported.</td>
<td></td>
</tr>
<tr>
<td>Supapanachart et al (2002)</td>
<td>18 preterm infants (mean GA 30 weeks) with PDA based on clinical and x ray criteria. Very ill babies excluded. IBU (10 mg/kg po ad x 3 days) v INDO (0.2 mg/kg po/qiv q12 h x 3 doses)</td>
<td>RCT (level 3b) Jadad score: 2</td>
<td>Clinical closure of PDA.</td>
<td>IBU = INDO for closure of PDA. ARR = 0.111 [95% CI = 0.229 to 0.452] Oliguria No significant difference after day 1. No significant difference. Randomisation method not given. Allocation concealment by sealed envelope. No blinding reported. INDO group was mixed between babies receiving oral and intravenous treatment; no attempt at subset analysis.</td>
<td></td>
</tr>
</tbody>
</table>
Clinical bottom line
- Intravenous ibuprofen is equivalent to intravenous indomethacin in the treatment of PDA in neonates.
- Patients receiving intravenous ibuprofen have a smaller rise in serum creatinine, and are less likely to develop oliguria (NNT = 6) than those receiving intravenous indomethacin.

Clinical bottom line
- No evidence was found to support the use of the glass tumbler test as a predictor for the diagnosis of petechiae.

0.2 mg/kg every 12 hours for three days, as opposed to the “low” dose of 0.1 mg/kg daily for six days.

The recent Thai study attempts to compare oral ibuprofen with indomethacin; however, analysis is very difficult as patients in the indomethacin group received the drug by different routes of administration (some oral, some intravenous). Further trials with oral ibuprofen would be very helpful, especially for clinicians in countries where this is the only form of the drug available. Unfortunately, the intravenous preparation of ibuprofen is not easily available in North America.

REFERENCES

What is the use of the glass test?

Reported by
Ami Parikh, Specialist Registrar in Paediatric A+E, St Mary’s Hospital, London; simonvn@aparikh.freeserve.co.uk
Ian Maconochie, Consultant of Paediatric A+E, St Mary’s Hospital, London

A well 4 year old girl is seen in A&E with a rash and fever. Her parents have performed the “glass tumbler test” and she has petechiae. You wonder how reliably this test distinguishes petechiae from other skin lesions.

Structured clinical question
In a child with a rash [patient] does a positive glass/tumbler test [test] reliably pick up petechiae [outcome]?

Search strategy and outcome

No relevant or irrelevant papers were found.

Commentary
The glass tumbler test is used in clinical practice and is recommended by many health organisations, including the Meningitis Research Foundation and Public Health Laboratory Service. These organisations inform parents of how to perform the glass tumbler test; by placing a glass tumbler firmly against a rash. If the parents can see the rash through the glass then the test is positive. If it is negative, parents are advised to seek medical advice immediately.

The absence of petechiae with the glass tumbler test should not reassure parents as children with meningococcal disease (and other petechial associated infectious diseases such as group B streptococcal infection) may present without a rash or with a maculopapular rash. Relying on the absence of a petechial rash could be fatal (that is, a test result which is a false negative). The converse is also true: that all children with petechiae do not have meningococcal disease (that is, a test result which is a false positive) and therefore do not necessarily need to follow that the treatment path for meningococcal disease or other infective causes, which may be inappropriate and harmful, as the child may experiences adverse side effects of treatment. The decision for the clinician is to judge the risk of serious illness in a child with the petechiae in context of the complete clinical state of the child, and not to rely solely on this one test. More work is required to determine the sensitivity, specificity, and likelihood ratio of this oft used test.

REFERENCES
2 PHLS website: www.phls.org.uk.