Scimitar syndrome as a differential diagnosis in a child with recurrent wheeze

Respiratory symptoms of cough, wheeze, and breathlessness account for 40% of referrals to a general paediatric clinic. The majority of these children suffer from “wheeze secondary to upper respiratory tract infection” and “asthma”.

A 7 year old girl was referred by her general practitioner to the clinic with a two month history of persistent cough and recurrent wheeze; she had been treated for suspected asthma with fluticasone and salbutamol since early childhood. There was a history of infantile eczema. She was growing well on the 50th centile. General examination was normal. There was no cyanosis or clubbing. Respiratory and cardiovascular system examinations were unremarkable.

She had been admitted at the age of 14 months with cough and wheeze; chest x ray showed right lower lobe consolidation which improved on antibiotics. Both radiographs and the pattern of curvilinear density (scimitar) in the right lower zone suggestive of scimitar syndrome was recognised. She was referred to the paediatric cardiology department for echocardiography, which showed dilated right atrium, right ventricle, and a branch of the right pulmonary vein draining into the inferior vena cava, a mild variant of scimitar syndrome.

A cardiac catheterisation and coil embolisation of the systemic pulmonary collateral from the descending aorta to the right lower lobe is scheduled.

Scimitar syndrome is a name given to the triad of: (1) curvilinear vascular density in the right lower zone; (2) hypoplastic right lung; and (3) dextroposition of the heart. It has a wide spectrum of presentation and may sometimes only present in adulthood with symptoms of wheeze, recurrent chest infections, or pulmonary hypertension.1

It remains a notoriously difficult diagnosis to make without a strong index of suspicion. In this case, pattern recognition on chest radiograph helped us to suspect the diagnosis. Examination and ECG may be entirely normal or just show right sided strain. Echocardiogram may also be normal or show dilated right sided chambers (as in this case). Diagnosis can be missed in up to 33% cases by echocardiography.2 More sensitive tests would include computed tomography scan, cardiac catheterisation, and magnetic resonance imaging with 3D MRA.3 Obstructive and early symptomatic types will usually need corrective surgery after stabilisation.4 Milder scimitar variant will probably do well with occlusion of the collateral supply.5

We have presented this case to highlight the fact that one has to keep an open mind regarding the final diagnosis in any child with recurrent wheeze, as all wheezes are not “asthma”.

P R Desai, M Babu
Department of Paediatrics, St John’s Hospital, Chelmsford CM2 9B, UK; prpravin@yahoo.com

References

Assessment of acute admissions by middle grade trainees and consultants will reduce the need for overnight hospital admissions

We carried out an audit to assess the impact on hospital admissions of patients being assessed by either middle grade trainees (residents) or consultants in a district general hospital (DGH). Our aims were to establish:

- Number of children kept in hospital overnight and those discharged the same day
- Number of readmissions of those discharged the same day
- Any adverse events in those discharged home the same day

We studied retrospectively all acute admissions to the children’s wards at Doncaster Royal Infirmary, a medium sized district general hospital, over the months of January and July 1998. We excluded all surgical and non-acute admissions. At the time of the study the Children’s Hospital did not have a day or acute assessment unit. Therefore the children were reviewed following admission to the wards. Whether trainees or consultants reviewed patients was an entirely random process, dependent on willingness and time to carry out ward rounds in late afternoon or early evening. The review could also be triggered by nursing staff or parents. The interval between the time of admission to the ward and the time the patients were reviewed varied from immediate review to a few hours. The decision to discharge children was usually taken jointly by medical and nursing staff, provided that parents were willing to look after their children at home. The parents of children discharged home on the same day as admission were given open access to the children’s ward—that is, they could either telephone the ward for advice or return with the child if concerned.

A total of 512 sets of case notes were reviewed by MMM and RAS. A pro forma was used to collect the data, which was stored on an Excel spreadsheet.

A total of 173 (34%) patients were under 1 year, 150 (29%) were 1–2 years, 53 (10%) were 3–4 years, 41 (8%) were 5–6 years, and 95 (18%) were over 6 years (fig 1). The source of referral was documented in 499 case notes. Of these, 287 (58%) were via a general practitioner, 178 (36%) were via the accident and emergency department, and 29 were from other sources. The commonest reason for admission was breathing difficulties followed by fever.

Of the 512 patients admitted, 260 (51%) were reviewed by middle grade trainees or consultants. Of those reviewed, 109 (42%) were discharged home the same day.
were discharged home the same day. The age group distribution (fig 1) and reason for admission (fig 2) of those reviewed was similar to that of the total sample. More children under 1 year were kept in overnight than were discharged home the same day; the reverse was true for those in the 1–2 year and 3–4 year age groups. The reason for admission of those discharged home the same day was also similar to that of the total sample. Slightly more patients were admitted in January than in July, but more patients were discharged home the same day in July than in January (26% vs 15%; fig 3). This could well be due to the fact that there is more pressure on beds in the winter months. However, it could also be due to a different spectrum and severity of diseases.

Of those discharged home the same day, seven (6%) were readmitted within seven days, four because of the same complaint and three with a different complaint. There were no adverse events. Those who were reviewed but kept in overnight had a similar distribution of the reason for admission to that of the total sample and those who were reviewed but with an excess of vomiting and/or diarrhoea.

In conclusion, assessing the need for admission resulted in 20% of all admissions (40% of those reviewed) being discharged home the same day. Vomiting and/or diarrhoea were more likely to result in patients being kept in overnight. We believe the number of patients who can be discharged home the same day will be much higher if all acute admissions are reviewed and assessed in the way described. This policy seems safe and acceptable to parents.

With the planned reduction in the number of specialist registrars, it seems that expanding the number of consultants would achieve the dual benefit of moving closer towards a consultant provided service and will also lead to reduction in the number of children requiring an overnight hospital admission.

Figure 2 Reason for admission.

Figure 3 Number of patients discharged.

Parkinson-like syndrome as the major presenting symptom of Epstein–Barr virus encephalitis

The main symptoms of Epstein–Barr virus encephalitis (EBV) encephalitis are fever, seizure, bizarre behaviour, headache, and metamorphosis. Bradykinesia, akathisia, involuntary hand movements, drooling, and torticollis are symptoms of Parkinson-like syndrome, which has never been described as a manifestation of EBV encephalitis. We report the case of a previously healthy boy who presented with Parkinson-like syndrome and was considered to be the major symptom of EBV encephalitis.

A 12 year old, previously healthy boy was referred to our hospital because of severe cough with sputum and intermittent fever for seven days. Abdominal discomfort and vomiting were also noted one day before admission. On admission, his consciousness was clear with no focal neurological sign, no hepato-splenomegaly, no lymphoadenopathy, and no exudative tonsillitis or skin rash. There was no previous personal or family history of seizure disorder or migraine, and both the boy and his family denied being exposed to some possible hallucinogenic or neuroleptic drug. Blood analysis was normal except for a mild leucocytosis with a left shift (10 500/mm3, 84.6% neutrophils), and there were no atypical lymphocytes. C reactive protein (CRP) level was 0.17 mg/dl (normal <0.3 mg/dl).

After admission, mucocutaneous agents and bronchodilators were prescribed. Fever, abdominal discomfort, and vomiting subsided soon. Twenty four hours after admission, his condition deteriorated with drowsiness, involuntary rhythmic finger tapping movement, resting tremor, bradykinesia, photosphobia, and staring eyes. But perceptual distortion was not noted. Cerebrospinal fluid (CSF) examination yielded yellow, clear fluid and normal opening pressure without microorganisms on Gram stain or culture. The cell count, protein, and sugar of CSF were all within normal limits. Table 1 lists laboratory evaluations for EBV and other possible pathogens of encephalitis. Brain magnetic resonance imaging (MRI) showed no abnormalities. TC-99m HMPAO brain SPECT (TC-99m hexamethylpropyleneamine oxime single photon emission tomography) showed diminished perfusion in the region of the right caudate nucleus. Electroencephalography (EEG) revealed diffuse slowing of background activity. His signs and symptoms showed gradual improvement under close observation in the following three weeks. He was then discharged in a stable condition. Follow up four months later showed no residual neurological sequelae.

Parkinson-like syndrome (extrapyramidal symptoms) is characterised by various neurological symptoms including akathisia, bradykinesia, torticollis, drooling, and involuntary hand movement. This syndrome develops in at least a quarter of children treated with neuroleptics due to disruption of the balance between the dopaminergic system and the cholinergic system within the basal ganglia. But Parkinson-like syndrome has also been recognised as a sequelae of acute viral encephalitis, including coxsackie B, cytomegalovirus, measles, herpes simplex virus, Japanese B encephalitis virus, and encephalitis lethargica. Mycoplasma pneumoniae infection has also been recognised as a cause of Parkinson-like syndrome. In our patient, exposure to possible hallucinogenic or neuroleptic drugs was denied. Serological tests and culture for other possible pathogens were negative. EBV encephalitis was diagnosed by serological and CSF polymerase chain reaction findings which fulfilled the diagnostic criteria.

EBV encephalitis is generally considered to be a benign, self limited disease associated with few sequelae. However, an incidence of

Table 1 Serological evidence for EBV encephalitis

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBV VCAlgM</td>
<td>1/32 (positive)</td>
</tr>
<tr>
<td>EBV VCAlgG</td>
<td>1/160</td>
</tr>
<tr>
<td>EBV determined nuclear antigens</td>
<td>Negative</td>
</tr>
<tr>
<td>EBV CSF PCK</td>
<td>Positive</td>
</tr>
<tr>
<td>Mycoplasma pneumoniae IgM</td>
<td><1/40</td>
</tr>
<tr>
<td>Culture for enterovirus</td>
<td>Negative</td>
</tr>
<tr>
<td>Coxsackie B virus IgM</td>
<td>Negative</td>
</tr>
<tr>
<td>Cytomegalovirus IgM</td>
<td>Negative</td>
</tr>
<tr>
<td>Herpes simplex IgG and IgM</td>
<td>Negative</td>
</tr>
<tr>
<td>JBE virus IgM</td>
<td>Negative</td>
</tr>
</tbody>
</table>
neurological sequelae after EBV encephalitis as high as 36% was reported by Domachowske and colleagues. The present case, therefore, not only draws attention to the role of EBV in infectious neurological disorders, but also suggests that an EBV aetiology should be considered in cases of Parkinson-like syndrome in childhood.

J-C Hsieh, K-H Lue, Y-L Lee
Chung Shan Medical University Hospital, 23 Sec. 1 Taijunggang road, Shi Chiu, Taichung, Ta, Republic of China; kent0837@yahoo.com.tw

References

Hyperextension of spine: unusual presentation of Guillain-Barré syndrome

Guillain-Barré syndrome (GBS) classically presents as ascending symmetric areflexic weakness with positive sensory symptoms. Recently, we managed a child presenting with unusual posture and hyperextension of the whole spine.

A 9 year boy presented with inability to hold books and write, and a limp. Over 12 hours he had developed tingling sensations and pain in the calf muscles; pain progressed to involve the neck and back by 24 hours and he was unable to flex his neck and extend his limbs. During the next two days weakness increased, especially of the lower limbs. By day 4, he had developed hyperextension of the cervical and thoracolumbar spine with flexed and adducted limbs. On day 6 when he presented to us, vital signs including blood pressure were normal and remained so during the hospital stay. He had painful restriction of passive extension at all joints; motor power and tone could not therefore be assessed. He had bilateral symmetrical weakness: shoulders (abductor, adductor, 2/5), elbows (flexor 3/5, extensor 2/5), wrists (dorsiflexor, palmar-flexor, 2/5), finger flexors (2/5), hand grip (20–30%), hip flexors (2/5), knees (flexor, extensors, 2/5), ankle (0/5), toes (0/5). Deep tendon reflexes were absent except for the biceps, which also disappeared by day 12. Cre- matic and abdominal reflexes were present; plantars were absent bilaterally. The spine was normal except for hyperextension of the cervical and thoracolumbar region. Respiratory muscles, higher mental functions, speech, cranial nerves, and bowel and bladder functions were normal. A plain radiograph of the spine showed mild thoracic lordosis. Cerebrospinal fluid examination on day 11 showed high protein (95 mg/dl). On day 12, spinal hyperextension and abnormal limb postures disappeared following improvement in pain as a result of analgesic therapy. Kernig's and Brudzinski's signs could be elicited. Lasegue's sign was present and the straight leg raising test was also positive. Symmetrical hypo- tonia became obvious.

GBS was suspected in view of progressive bilateral symmetrical weakness, severe radiculopathy, and albumino-cytological dissociation.3 Nerve conduction studies, performed on day 23, showed reduced nerve conduction velocity in the motor nerves. Sensory nerves were normal. We could not determine F wave conduction velocity. The pain and tenderness subsided gradually. With regular physiotherapy the neck became soft, motor power improved, and he was able to sit unsupported by day 20. Four months later, neurological examination was normal. A stool culture for poliovirus was negative.

Children with GBS frequently have pain in the back and lower limbs, which is aggravated on the straight leg raising test in most of them. These pain syndromes are attributable to radiculitis,4 an early and predominant feature in GBS.5 Prominent radiculitis in this case might have led to severe pain in the back, causing generalised paravertebral muscle spasm. This resulted in the unusual posture of hyperextension of the spine.

A K Baranwal, S C Singh
Department of Pediatrics, BP Koirala Institute of Health Sciences, Dharan, Nepal; baranwall1970@yahoo.com

REFERENCES

An error occurred in the letter by S Ashraf and M Z Mughal in the September issue (Arch Dis Child 2002;87:263–4). In the fifth paragraph, the first sentence should read “According to the 1991 census data there were approximately 4000, 6–36 month old children of ethnic minority background resident in the city of Manchester.” The journal apologises for the error.

The photograph of children in the Morigate area in Delhi on the cover of the August issue was taken by the American photographer Mark Inouksen of Dallas, Texas.
Intravenous atropine treatment in infantile hypertrophic pyloric stenosis

Hypertrophic pyloric stenosis of infancy is a disorder of early infancy with typical clinical features and well-established radiological appearances of the pyloric canal. Many studies with surgical and medical treatment have been reported over the past fifty years. Pylorotomy has tended to become the favoured method of treatment as with expert paediatric, surgical, anaesthetic, and nursing services and specialised accommodation for infants, the outcome is good with low mortality, short stay in hospital and few complications. However, a variety of studies of medical treatment with anticholinergic drugs and successful outcomes in some large series of cases have also been reported from Sweden, United States of America and the United Kingdom.

Since 1996 this group of workers from Osaka, Japan, has revived an interest in medical treatment with reports of a new regime using methyl atropine nitrate intravenously. To achieve satisfactory short-term outcomes considerable variation in drug dosage and modified feeding regimes were necessary which involved much medical supervision and careful monitoring for toxic effects of the drug, which were minimal. The treatment was successful in the relatively small number of infants in the trial (19) with two infants being referred for pylorotomy, no mortality and no serious complications. An interesting part of this paper is the long term clinical follow up of the successfully treated infants over two years and ultrasonography of the pyloric canal which demonstrated the changes in muscle thickness and length of the canal. The disadvantages of the treatment mentioned by the authors are length of stay in hospital and the necessity to continue atropine medication orally after discharge home.

Comparing the use of this anticholinergic drug intravenously with oral treatment using methyl scopolamine nitrate and similar restricted feeding regime, oral methyl scopolamine nitrate suppressed vomiting more quickly and reliably, was also available for subcutaneous injection if vomiting recurred as size of feeds was increased, and no toxic effects were seen in any dosage used. It would be interesting if these workers would be prepared to try the use of methyl scopolamine nitrate intravenously as pharmalogically this compound was reported to have a spasmylytic effect on gut two to three times greater than methyl atropine nitrate1 with lesser central nervous effects.

This paper serves to emphasise once more that these infants should always be treated in paediatric centres where there is a high level of experienced paediatric care and nurses trained for neonatal special care.

B Corner
Flat 4 Chantley, The Avenue, Sneyl Park, Bristol BS9 1PF

Author’s reply

We appreciate the interest shown by Dr Beryl Corner with regard to our article. Unfortunately, intravenous atropine therapy is not widely accepted in European countries or the United States; it is however now becoming popular in Japan.

We are truly honoured to receive the comments of Dr Corner, who is a pioneering neonatologist and reported medical treatment with methyl scopolamine nitrate for infantile hypertrophic pyloric stenosis (IHPS) in 1995. She pointed out that methyl scopolamine might be better than atropine sulfa in terms of effectiveness and side effects. One of the reasons why atropine was used in our study is that methyl scopolamine is not available in our country. Scopolamine butyrylhydizone is an available quaternary ammonium derivative of scopolamine and lacks toxic side effects. However, this agent tastes bitter and is difficult to give orally to infants. Therefore, this agent is only given intravenously in infants with IHPS.

We do not know if it is worthwhile to attempt combination therapy with intravenous scopolamine butyrylhydizone and oral atropine rather than the intravenous and oral atropine therapy. Secondly, we already knew that an intravenous atropine injection of 0.01 mg/kg was effective enough to abolish transiently the phasic and tonic pyloric contractions characteristics of IHPS. We used an intravenous atropine injection of 0.01 mg/kg in our study to confirm that those pyloric contractions were the cause of disturbed transpyloric flow in this condition by seeing that their inhibition with the dose of atropine ameliorated symptoms.

We agree with Dr Corner’s last comment, but believe that intravenous atropine therapy is possible not only in high level paediatric centres, but also in general hospitals where infusion therapy with intravenous atropine injections can be done safely in small infants. Clinical trials are now ongoing to establish more efficient treatment strategy for IHPS with medical and surgical therapy in our country.

H Kawahara
Consultant Paediatric Surgeon, Osaka Medical Centre and Research Institute for Maternal and Child Health; kawahara@pedsurg.med.osaka-u.ac.jp

References

Hypothermia in a child secondary to ibuprofen

A 7 year old girl was admitted with right lower lobe pneumonia. On admission her temperature was 39.7°C. After five hours she received ibuprofen (6 mg/kg). Subsequent to this single dose her temperature decreased to 33.5°C (core temperature 34.9°C) over four hours. On examination her pulse was 90/min, blood pressure 90/50 mm Hg, SaO2 96% in air, and respiratory rate 20/min. Respiratory examination was consistent with signs of right lower lobe consolidation. The rest of the examination, including the central nervous system, was unremarkable.

Results of investigations included: Hb 125 g/l; white blood cell count 10.7 × 10³/l platelet count 81 × 10³/l; C reactive protein 180 mg/l; blood glucose 4.6 mmol/l. Electrolytes and all other biochemical investigations were normal. Thyroid and cortisol assays were normal. Results of all tests to determine possible bacterial or viral aetiology were all negative (blood and urine culture, viral serology, and tests for mycoplasma). Magnetic resonance imaging (MRI) of the brain was normal.

The hypothermia was so marked that we had to use a hot air spacer blanket to raise her temperature. Despite all the efforts she remained persistently hypothermic for four days (see fig 1).

Figure 1 Temperature chart. After administration of ibuprofen, the temperature dropped considerably and remained low for five days.

www.archdischild.com
A single dose of hydrocortisone and an albumin infusion were given initially. She was subsequently treated with warmed intravenous fluids for three days and antibiotics for 10 days. She recovered completely and continues to enjoy good health.

1 year old premature baby who presented with a three week history of coryzal symptoms and three day history of frequent cough and vomiting. She was shocked, and had hepatomegaly and decreased conscious level. Blood glucose was 3.9 mmol/l (reference interval 3.5–5.5), plasma sodium 129 mmol/l (135–147), potassium 5.52 mmol/l (3.5–5.0), urea 17.8 mmol/l (3.3–6.6), creatinine 36 mmol/l (30–74), bicarbonate 15 mmol/l (21–28), sodium 139 mmol/l (135–147), potassium 5.2 mmol/l (4.5–5.0) and C reactive protein 4.6 mg/l (0–5). Liver function tests and clotting were normal. She was resuscitated with a total of 30 ml/kg of colloids and crystalloids. The following day she relapsed with abdominal distension, shock, and deteriorating conscious level. Investigations showed glucose 14.2 mmol/l, amylase 20 IU/l (8–85), AST 186 IU/l (10–45), and ALT 129 IU/l (10–40). An x-ray examination of the abdomen showed free air under the right hemidiaphragm. Emergency laparotomy revealed a single, 1 cm x 1 cm acute perforation in the second part of the duodenum. Histology and rapid urease test (CLO) of the duodenal biopsy for Helicobacter pylori were negative. Fasting blood gastrin was 20 mU/l (10–100). She was discharged home taking omeprazole. Upper gastrointestinal endoscopic biopsy (eight weeks later) for histopathology and CLO test from oesophagus, stomach, antrum, and duodenum were normal.

Analysis of urinary organic acids by gas chromatography and mass spectrometry, obtained a day after clinical presentation, revealed a marked increase in 5-hydroxyhexanoic acid (21% of total organic acids); a modest dicarboxylic aciduria (suberic accounted for 8% and adipic 6% of total organic acids); and a small but significant quantity of hexanoylglycine (2% total organic acids) in the absence of ketonuria.

Blood obtained a week after clinical presentation, when analysed by tandem mass spectrometry, showed octanoylglycine 1.61 µmol/l (<0.19), hexanoylglycine 0.67 µmol/l (<0.29), and deoxynhexanoylglycine 0.63 µmol/l (<0.10), with a normal concentration of acetylcarnitine 4.0 µmol/l (6.2–27.5). This profile was consistent with MCADD. Polymerase chain reaction/restriction digests based method revealed two mutations in the MCADD gene.

The clinical detail coupled with the absence of ketones and the increased 5-hydroxyhexanoic acid led us to look for an abnormality in the oxidation of fatty acids, and resulted in identification of the minor constituent, hexanoylglycine that is recognised as an indicative marker of MCADD. Increases in urinary hexanoylglycine and 5-hydroxyhexanoic acids in the absence of ketonuria have been reported previously in MCADD patients during clinical attack,2 and also in a boy who died.1 Our case was unusual in that the amount of 5-hydroxyhexanoic acid was greater than even the sum of the individual dicarboxylic acids present, although high levels of 5-hydroxyhexanoic acids are reported in acute episodes.1 The increased concentration of octanoyl carnitine in blood was also consistent with a diagnosis of MCADD.

We believe that this is the first report of MCADD presenting with duodenal ulcer. It could be argued that the ulcer was the primary problem and that the decompensation was caused by the subsequent illness.
Glucose metabolism in sleep disordered breathing

An association between sleep disordered breathing (SDB) and impaired glucose tolerance has been reported in adults. Although SDB has been reported in diabetic children, no data are available on glucose metabolism in children with SDB. We used glycated haemoglobin (HbA1c) for the preliminary assessment of glucose metabolism in paediatric SDB patients.

HbA1c was measured in 12 children aged 26–116 months (mean 63) with suspected SDB (3.8 ± 0.5) with 26–116 months (mean 63) with suspected SDB (3.8 ± 0.5) and impaired glucose tolerance.

The desaturation time (percentage of total sleep time with oxygen saturation <90%) was significantly higher in the SDB group (1.3 ± 0.5) than in the non-SDB group (0.8 ± 0.3). The actual HbA1c values were all within normal range. No other items showed significant differences between the two groups.

The severity of respiratory disturbances during sleep in diabetic children has been known to correlate with the degree of desaturation in non-obese paediatric SDB patients; HbA1c levels should, however, be monitored after treatment. SDB and glucose metabolism are hypothesised to be closely associated in children as well as adults.

References

Short versus standard duration antibiotic treatment for UTIs: a comparison of two meta-analyses

Having recently published a meta-analysis on the same clinical question, we were interested in the potential efficacy (and associated costs) of short-course treatment. Although we presume that they felt single-dose or single-day antibiotic treatment was not a fair comparison with 7–14 day treatment, we are interested in the potential differences between short-course and standard (7–14 days) treatment. We compared 3 days of treatment to 7–14 days of treatment, whereas Michael et al compared 2–4 days of treatment to 7–14 days of treatment and excluded 11 studies comparing single-dose or single-day treatment to standard duration treatment.1,2,3

The reasons for this exclusion are unclear, although we presume that they felt single-dose or single-day treatment was not as effective as 7–14 day treatment. However, a number of randomised controlled trials (RCTs) made this comparison. Interestingly, the authors identified a few studies that they had missed.1 Therefore, we postulate a few possible explanations and conclude that the two meta-analyses, on closer inspection, actually have very similar results.

For their primary outcome, frequency of positive urine cultures 0–7 days after treatment, the authors found no significant difference between short-course (7–14 days) and standard (7–14 days) treatment (RR 1.06; 95% CI 0.64 to 1.76). In contrast to our finding of a 94% increased pooled risk of treatment failure with short course treatment (RR 3.33) compared to standard treatment (7–14 days) (RR 1.94, 95% CI 1.19 to 3.15; NNT=13, 95% CI 100 to 7), why the discrepancy? We postulate a few possible explanations and conclude that the two meta-analyses, on closer inspection, actually have very similar results.

Our omission of certain studies identified by Michael and colleagues may have biased our results. However, of the three studies that we missed and that they included in their analysis of treatment failure at 0–7 days after completion of treatment, two favoured standard duration treatment, which would have supported our pooled RR result. Another possible explanation for the discrepancies is that there was the use of different definitions of treatment failure. For our definition of treatment failure we pooled persistent infection (failure to eradicate the organism within 2 weeks of cessation of treatment) and relapse (recurrence of symptoms and reinfection within 2 weeks of cessation of treatment after initial bacteriologic cure), whereas Michael et al used frequency of positive cultures 0–7 days after cessation of treatment as their primary outcome measure of treatment failure. If reinfections are eliminated from the standard treatment, we are interested in the potential differences between short-course and standard (7–14 days) treatment. However, the most likely explanation for the divergent results was the different ways in which the study question was framed and the resulting differences in studies included in the meta-analyses. The results were compared in terms of single-dose or single-day treatment.2,3

First, we applaud the authors on their methodological sound review. The literature search was explicitly described and exhaustive. In fact, the authors identified a few studies that they had missed.1 Therefore, we postulate a few possible explanations and conclude that the two meta-analyses, on closer inspection, actually have very similar results.1

Thus, our meta-analysis demonstrates clearly that single dose or single day antibiotic treatment is not as effective as long-course treatment for UTIs in children. The two meta-analyses together suggest that: (1) “longer” short-course therapies may be as effective as 7–14 days of antibiotics and
(2) there is probably a duration of treatment threshold for “short-course” antibiotic treatment, above which longer duration of treatment confers no therapeutic advantage.

Michael and colleagues suggest that as little as 2 days of treatment may be sufficient. However, only one of the trials in their meta-analysis studied 2-day treatment and that one showed long-course treatment with a RR of UTI 0–7 days after completing short course treatment of 2.17 (95% CI 0.48 to 9.76). The duration of treatment threshold may be 3 days, but the point estimate of relative risk of treatment failure with 3 day treatment in the meta-analysis suggests otherwise. If the duration of short-course treatment for which there is no difference in efficacy compared with standard treatment is actually greater than 3 days, then the added convenience and cost savings of “short-course” treatment become marginal. In the absence of appropriately powered RCTs (or meta-analyses) examining outcomes (treatment failure, reinfection, emergence of resistant organisms and cost) with “longer” short course treatment regimens (3, 4, and 5 days), we think that clinicians should continue to treat UTIs in children with at least 7 days of antibiotics.

R Keren
Department of Pediatrics, The Children’s Hospital of Philadelphia, USA
E Chan
Department of Pediatrics, The Children’s Hospital of Boston, USA

Correspondence to R Keren; keren@email.chop.edu

References

Authors’ reply
In response to Keren and Chan’s thoughtful letter regarding our recent systematic review, we need to emphasise that the study question we addressed was different from that addressed by Keren and Chan in their own systematic review of randomised controlled trials comparing short with standard duration treatment in the treatment of children with urinary tract infection (UTI). The aim of our study was to determine the relative efficacies of short (2–4 days) and standard duration (7–14 days) treatment with the hypothesis that short duration may be as effective as standard duration treatment and provide potential advantages such as improved compliance. Therefore, we did not include trials in which single dose treatment was compared with standard duration treatment. In addition we chose to limit the review to trials in which the same antibiotic was used to treat each group, to avoid confounding.

The response to single dose treatment appears different from short course, suggesting that it is inappropriate to pool studies comparing single dose and standard treatment with those comparing short course and standard treatment. Three systematic reviews have now demonstrated that there is no significant difference in the number of children with persistent bacteriuria after short duration or standard duration treatment (see table 1). In contrast, Keren and Chan found that significantly more children had persistent bacteriuria following single dose compared with standard duration treatment (7 data sets, OR 6.38; 95% CI 1.88 to 10.89).

Because there is no significant difference between short duration and standard duration treatment in the number of children with persistent UTI after treatment, it is not possible to calculate a number needed to treat to prevent one episode of persistent bacteriuria.

From our systematic review, we are not able to determine whether there is an “optimum duration of treatment threshold” as postulated by Keren and Chan. Only one study included in the meta-analysis, examining the effects of short duration and standard duration treatment in clearing bacteriuria, compared 2 days of treatment with 10 days’ treatment. In their letter above, Keren and Chan argue that this study favours short duration treatment. However, there was no significant difference between treatments in the number of children with persistent bacteriuria at the end of treatment (RR 2.17; 95% CI 0.48 to 9.76) although the wide confidence intervals do not exclude the possibility that short duration treatment could be more or less effective than standard duration treatment.

No significant differences in the number of children with persistent UTI after treatment between short duration and standard duration antibiotic treatment have been found in three systematic reviews of randomised controlled trials despite different study inclusion criteria and definitions of persistent infection.

As addressed in our review, the wide confidence intervals around the summary estimates indicate residual imprecision in the results. However, this statistical imprecision is of doubtful significance for most children, who are at a low risk (1–3%) of persistent UTI at the end of treatment following their first lower tract UTI. Therefore, we do not support Keren and Chan’s conclusion that clinicians should continue to use short course UTI with standard duration treatment. Instead, we believe that short duration treatment may be used to treat children with lower tract UTI.

E M Hudson, M Michael, J C Craig, V A Moyer
Centre for Kidney Research, The Children’s Hospital at Westmead, Sydney, Australia

Correspondence to: E Hudson; Eliash@chw.edu.au

References

Table 1 Results of three systematic reviews of randomised controlled trials comparing short duration with standard duration of antibiotic treatment for lower tract urinary tract infection.

<table>
<thead>
<tr>
<th>Systematic review</th>
<th>Comparison of duration of therapy</th>
<th>Number of data sets</th>
<th>Risk for persistent bacteriuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tran et al 2001</td>
<td>1–4 days v s >5 days</td>
<td>13</td>
<td>RR: 4.26 (95% CI: 0.95, 9.48)</td>
</tr>
<tr>
<td>Keren & Chan, 2002</td>
<td>3 days v s 7–14 days</td>
<td>5</td>
<td>RR: 1.36 (95% CI: 0.68, 2.72)</td>
</tr>
<tr>
<td>Michael et al 2002</td>
<td>2–4 days v s 7–14 days</td>
<td>8</td>
<td>RR: 1.06 (95% CI: 0.64, 1.76)</td>
</tr>
</tbody>
</table>

RD, risk difference; CI, confidence intervals; RR, relative risk
Is life long follow up for patients with Kawasaki disease indicated?

Brogan et al recommended life long follow up for patients with Kawasaki disease, including those who have not had coronary artery involvement. The reason they quoted was to document the blood pressure and provide general advice regarding other risk factors. The American Heart Association recommends echocardiographic (EKG) evaluation of the coronary arteries at presentation and follow up EKG at 6–8 weeks and 6–12 months after the onset of symptoms for those who did not have or just have transient coronary artery involvement. They do not recommend follow up after first year unless cardiac disease is suspected.

Tuohy et al demonstrated, in their multi-institutional review of 536 patients, that no patient with a normal follow up EKG, performed within 2 months following disease onset, subsequently developed echocardiographic coronary artery abnormalities. Even those patients with initial echocardiographic abnormalities that became normal at 1–2 months remained normal thereafter. Scott and colleagues showed that no patient with a normal EKG at 2 weeks to 2 months after the onset of symptoms had subsequent ECGs that revealed coronary artery abnormalities and questioned the value of 6–12 month EKG in the same group.

Brogan et al did not make any comments about the adverse effects of life long follow up, such as anxiety and inappropriate restriction of activities. Finally, there were no comments about the cost and resources for providing life long follow up. The authors did not specify whether paediatric cardiologists, general paediatricians, or general practitioners would follow up; all of them already have increasing diatrics, or general practitioners would follow the cost and resources for providing life long follow up in children: a meta-analysis of 1279 patients. J Pediatr 2001;139:93–9.

Management of childhood osteoporosis

I read with interest this recent review article that summarises current knowledge about this subject. I have a number of comments that are pertinent to the discussion. As the authors allude to, there is currently a lack of good evidence on which we can base preventive management. Although calcium and vitamin D supplements are routinely used by some paediatric rheumatologists, there appears to be only one short term study suggesting this may be beneficial for bone density. The lack of evidence in relation to growth hormone therapy are methodologically flawed because neither have accounted for the change in apparent bone density, which will occur in any child who grows better for any reason when assessed by modalities such as dual energy x ray absorptiometry.

As illustrated by another article in the August 2002 edition of Archives, there is a lack of good evidence on which to base much paediatric management and it is imperative that further research, especially randomised controlled trials, is undertaken in the area of prophylaxis against osteoporosis in children with chronic disease on steroids. Paediatric endocrinologists will be familiar with the flurry of small uncontrolled studies undertaken in numerous groups of children with chronic disease on steroids who have become available. Many reports of short term improvements in growth velocity have not been supported by long term outcomes in height. There is a risk that a similar phenomenon will occur with the use of bisphosphonates in children with chronic disease and low bone density without properly designed studies and satisfactory outcome measures.

The use of glucocorticoids in children with chronic disease occurs across many paediatric subspecialties and I would argue strongly that the management and prevention of osteoporosis requires specialist expertise just as the management of growth retardation currently does. It is important that in each tertiary centre such a specialist service is provided by one department that has expertise in the interpretation of bone density scans in children and the management of children with osteoporosis. Such individuals may not only be paediatric endocrinologists but may also be a paediatric rheumatologist, a general paediatrician with a special interest in bone disease or a metabolic bone disease subspecialist. It is only in this way that we can learn more about the management of this condition and avoid children being treated inappropriately.

N J Shaw
Birmingham Children’s Hospital, Birmingham, UK
nick.shaw@bhamchildrens.wmids.nhs.uk

References

Newborn screening for Duchenne muscular dystrophy

Elliman, Dezaute, and Bedford, in their recent leading article on newborn and childhood screening, include reference to newborn screening for Duchenne muscular dystrophy (DMD). They argue that the main value of such a screening programme is to warn parents that future sons may be affected and, support this statement with reference to Jarvinen et al. This paper does not report a newborn screening study but the results of a retrospective study of 23 females in Finland carrier tested for DMD during childhood. However, a newborn screening programme for DMD has been running in Wales since 1990 (1990–8 as a research evaluation and from 1998 health authority funded). During the research period interim evidence was published. More recently the full results of our prospective study have been published. Our evaluation has demonstrated that a newborn screening programme for DMD can be acceptable to both parents and health professionals, providing that a rigorous service delivery protocol is in place and the programme is supported by an effective infrastructure, in particular by paediatric and genetic services.

E P Parsons
SONAMS and Institute of Medical Genetics, University of Wales College of Medicine, Cardiff, UK
D M Bradley
Department of Medical Biochemistry, University Hospital of Wales, Cardiff, UK
A J Clarke
Institute of Medical Genetics, University of Wales College of Medicine
Correspondence to Dr Parsons; parsonsep@cf.ac.uk

References
The effect of sanctions on children of Iraq

Sanctions were imposed on the people of Iraq in 1990. Iraqi people are still suffering, especially children. Infant mortality (IM) has increased more than five times. Previously it had decreased from 139 in 1960 to 20 in 1989, which was comparable to developed countries. In 1992 it went up to 111.1 In 1999, a decade later, IM was still high at 104.4 The Gulf War and trade sanctions caused a threefold increase in mortality among Iraqi children under 3 years of age. It has been estimated that more than 46,900 children died between January and August 1991.2 The study of the UN Food and Agricultural Organisation, published in a letter to the BMJ in 1995, concluded that deaths of more than 500,000 children could be attributed to UN sanctions. It also stated that the death rate among children under 5 years in Baghdad had increased fivefold since the war ended in 1991. Data for 1994–99 showed that mortality among children under 5 years was 131 per 1000 live births, compared with 56 for 1984–9, a threefold increase in mortality among Iraqi children under 5 years of age. It has been estimated that more than 46,900 children died between January and August 1991.2

A child psychology study (1991) revealed a level of psychological stress and pathological behaviour that was the highest the authors had seen in 10 years of conflict research. It revealed a highly disturbed population of children. Fear and anxiety were associated with memories of crisis. Seventy five per cent felt sad and unhappy, and four out of five expressed fear of losing their family by death or separation. There was a threefold increase in leukaemia in the southern provinces, sites of the Gulf War battlefield. A WHO investigation in 1995 suggested a possible link to products—now banned—from the US and Dutch companies which were derived from depleted uranium used in piercing artillery shells. There were staggering deficiencies in cancer treatment facilities because of UN sanctions which were intended to exclude food and water, and inadequately provide health care.3

The rate of low birth weight (<2500 grams) which was in the region of 9% in the period 1979–88 was increased to 21% in 1994.4 The 1995 Baghdad nutrition survey of children under five years of age showed that the percentage of children below –2SD in urban Baghdad was 28% for stunting, 29% for underweight, and 12% for wasting, while malnutrition (~3SD) was noted among children, 10% for stunting, 7% for underweight, and 3% for wasting.5 The survey by FAO in the year 2000 indicated the prevalence of wasting in children under 5 years of age. It has been estimated that more than 46,900 children died between January and August 1991.2

In school children aged 6–8 years the prevalence of wasting ranged from 1% in the north in 1994 showed a 30–50% prevalence of wasting in children under 5 years of age. It has been estimated that more than 46,900 children died between January and August 1991.2

A report in 1996 showed that one third of hospital beds were closed. More than half of all diagnostic and therapeutic equipment was not working due to lack of spare parts and maintenance. All pharmaceutical supplies had experienced serious problems with lighting, cleaning, water supply, and sewage. The population had been burdened by a rapid rise in serious infections, nutritional deficiencies among children and pregnant women, and other treatable conditions for which neither drugs nor operations were available.6 Paediatricians have been isolated by the intellectual embargo from the international medical community. Physicians who wish to attend international conferences face travel restrictions, like denial of visas to European countries or the USA. In 1990, the delivery of European and American medical journals were abruptly stopped. This intellectual embargo served to undermine the care of patients, and denies Iraqi doctors the right to share scientific advancement and its benefits.7

References

Mechanisms of pulmonary hypertension in Bordetella pertussis

Casano et al describe a case of refractory pulmonary hypertension with severe Bordetella pertussis infection.1 Their description of the literature is incomplete. We present here the four cases of fatal pulmonary hypertension (PHT) in a series of 13 critically ill infants with B. pertussis.2 The cases that developed PHT all presented with severe hyperleukocytosis (WCC>100 x 10^9/L) which was unresponsive to all currently available modalities including extra-corporeal membrane oxygenation. Hyperleukocytosis was an independent predictor of death when corrected for presentation severity. In the absence of other known histological evidence, it was such that extreme leukocytosis predisposes to the formation of lymphocyte aggregates in the pulmonary vasculature and increased pulmonary vascular resistance via obstruction rather than...
hypoxic vasoconstriction. Therefore Dr Casano’s recommendation for the early use of pulmonary vasodilators is unlikely to be sufficient in this context. We are assessing the impact of strategies aimed at reducing lymphocyte numbers and adhesion in addition to standard treatments for pulmonary hypertension.

M J Peters, C M Pierce
Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK

N J Klein
Infectious Diseases and Microbiology Unit, Institute of Child Health, London, UK

Correspondence to: Dr Peters; m.peters@ich.ucl.ac.uk

References

Authors’ reply
As Peters comments in his letter, we know that hyperleukocytosis has been postulated as a factor for pulmonary hypertension in Pertussis infection, but necessary brevity did not make it possible to report. Nevertheless, our patient never reached these values of leucocytosis; it’s possible, as in many other diseases, that several pathogenic mechanisms contribute to pulmonary hypertension, making a concomitant treatment approach necessary.

M Pons, P Casano
Hospital Sant Joan de Déu, Unidad de Cuidados Intensivos Pediátricos, Passeig de Sant Joan de Déu, 2 080950, Esplugues de Llobregat, Barcelona, Spain

Correspondence to: Dr Pons; mpons@hsjdbcn.org

CORRECTIONS
In the paper by Clarkson and Choonara in the December issue of ADC (Arch Dis Child 2002;87:462–7) the following corrections have been noted:
Results; first sentence: there were 331 deaths with 390 suspected drugs (not 390 and 389 respectively as stated in the paper).
Results; section “Corticosteroids”: the third sentence starting “No details were avail-
Results; section “Non-steroidal anti-
Discussion; fifth paragraph: the penulti-

Discussion; fourth paragraph, second sen-

The following figure should have appeared with the letter by Desai and Babu in the October issue of ADC (Arch Dis Child 2002;87:357).

Figure 1 Scimitar syndrome. Chest x ray showing a curvilinear density which extends from the right hilum towards the right hemi-diaphragm which represents the anomalous pulmonary vein.