Polyarticular juvenile idiopathic arthritis treated with methotrexate complicated by the development of non-Hodgkin’s lymphoma

A G Cleary, H McDowell, J A Sills

A 10 year old boy with juvenile idiopathic arthritis (JIA) presented at routine review with bilateral non-tender but firm and suspicious cervical lymphadenopathy, two months after discontinuing therapy. Magnetic resonance scan revealed significant lymphadenopathy around the upper abdominal aorta and coeliac axis. Lymph node biopsy was consistent with non-Hodgkin's lymphoma, similar to that reported in several adults with rheumatic diseases taking low-dose MTX therapy. He was successfully treated with a standard cytotoxic chemotherapy regime, but unfortunately his polyarthritis has subsequently flared some months after completion of his treatment.

CASE REPORT
Clinical findings
A 10 year old boy with a four year history of juvenile idiopathic arthritis (JIA) presented at routine review with bilateral non-tender but firm and suspicious cervical lymphadenopathy. He had hepatosplenomegaly. He had been treated with methotrexate (MTX) 7.5 mg per week, for 2 years 8 months; cumulative dose was 1042.5 mg. The MTX had been given by subcutaneous injection for four months prior to its discontinuation because of nausea associated with oral preparations. MTX had been discontinued two months prior to his presentation with lymphadenopathy as his arthritis had been quiescent for one year. He had also intermittently been treated with daily or alternate daily prednisolone throughout the period of his JIA, and with several intra-articular corticosteroid injections. There were no other co-morbid conditions.

He was admitted for urgent investigation. Full blood count, urea and electrolytes, and lactate dehydrogenase were normal. Serology indicated recent Epstein–Barr virus (EBV) infection, with IgG to EBV detected. Cytomegalovirus (CMV) IgG was not detected. Bone marrow aspirate and trephine revealed no evidence of malignant disease, and there were no malignant cells in his cerebrospinal fluid. Abdominal ultrasound confirmed hepatosplenomegaly and the presence of para-aortic nodes. Magnetic resonance scan revealed a diffusely enlarged spleen, 14 cm in length, with normal texture of liver, pancreas, and both kidneys. There was significant lymphadenopathy around the upper abdominal aorta and coeliac axis, with individual nodes measuring 2 cm in diameter. Computed tomography of the chest revealed evidence of bilateral cervical lymphadenopathy, extending to the sternocleidomastoideal joints. There was no evidence of significant mediastinal or axillary lymphadenopathy, and no evidence of parenchymal lung disease.

Pathological findings
A tissue diagnosis of non-Hodgkin's lymphoma was obtained. Histopathology of a lymph node biopsy revealed T cell rich B cell lymphoma. Most of the larger cells were positive for CD79A, CD20Y, and CD45RA (B cell markers), but negative for CD10, CD15, CD30, EBV, and T cell markers (including CD3, CD4, CD5, CD8, CD43, CD43RO), and dendritic reticulum cells (CD21).

Treatment
The patient was treated according to a standard treatment protocol (LMB89), which consists of six months of cytotoxic chemotherapy. This comprised vincristine, cyclophosphamide, prednisolone, MTX, doxorubicin, cytarabine, and intrathecal MTX. During this treatment programme his arthritis went into remission. At follow up six months after completion of chemotherapy his lymphoma is in remission, but unfortunately his arthritis has recurred, requiring careful consideration of treatment options.

DISCUSSION
The literature relating to lymphoma occurring in patients with rheumatoid arthritis treated with weekly low dose MTX has recently been reviewed; at least 50 cases have been reported. To the best of our knowledge, four children with JIA treated with MTX have developed Hodgkin's lymphoma. Two of these children had evidence of EBV infection associated with their lymphoproliferative disease. Table 1 summarises the characteristics of the cases.

The incidence of non-Hodgkin's lymphoma in the age group 5–9 years for the period 1968–95 was 6.5 per million per year. At present approximately 100 children at our institution with JIA are treated with MTX. Several other paediatric rheumatology units were contacted (Great Ormond Street, Birmingham, Nottingham, Leeds, and Newcastle). Any other cases of lymphoproliferative disease (LPD) occurring during treatment with MTX were sought, as it was acknowledged that since case reports were not the favoured format for most journals, other cases may exist. In fact only one other case was noted; this was in a child who also had Blackfan–Diamond syndrome and therefore was at increased risk of haematological malignancy (Professor Woo, personal communication).

Post-transplant lymphoproliferative disorder (PTLD) in an immunocompromised host following paediatric renal transplantation has been reported. Srivastava et al reported PTLD in six of 84 renal transplant recipients in one centre. In all of these patients PTLD was associated with EBV infection (primary in five, reactivation in one). All patients received therapeutic immunosuppression post-transplantation, with prednisolone and various combinations of mycophenolate

Abbreviations: Abbreviations: CMV, cytomegalovirus; EBV, Epstein–Barr virus; JIA, juvenile idiopathic arthritis; LPD, lymphoproliferative disease; MTX, methotrexate; PTLD, post-transplant lymphoproliferative disorder

Arch Dis Child 2002;86:47–49
Table 1 Characteristics of patients with juvenile arthritis developing lymphoma while treated with MTX

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Diagnosis</th>
<th>Duration of MTX therapy</th>
<th>Other therapy during treatment with MTX</th>
<th>Cell type</th>
<th>Spontaneous remission on stopping MTX</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Systemic JIA Mixed cellularity</td>
<td>16 months</td>
<td>Prednisolone</td>
<td>CD30 CD15 EBV neg</td>
<td>Yes</td>
<td>Late LPD relapse</td>
</tr>
<tr>
<td>3</td>
<td>Hodgkin’s lymphoma</td>
<td>33 months</td>
<td>Prednisolone</td>
<td>CD30 EBV pos</td>
<td>Not attempted</td>
<td>Remission of LPD and JIA</td>
</tr>
<tr>
<td>4</td>
<td>Systemic JIA Nodular sclerosing Hodgkin’s lymphoma</td>
<td>30 months</td>
<td>Prednisolone Cyclosporin A</td>
<td>CD30 CD15 CD20 LMP1 EBV pos</td>
<td>Not applicable</td>
<td>Death (respiratory failure secondary to legionella pneumonia)</td>
</tr>
<tr>
<td>5</td>
<td>Polyarthritis (RF positive) Nodular sclerosing Hodgkin’s lymphoma</td>
<td>21 months</td>
<td>Sulphasalazine</td>
<td>EBV negative</td>
<td>Partial response</td>
<td>Remission of LPD and JIA after 12 months follow up</td>
</tr>
<tr>
<td>Our case</td>
<td>Polyarthritis Non-Hodgkin’s lymphoma</td>
<td>32 months</td>
<td>Prednisolone Intra-articular steroids</td>
<td>CD79A CD20 CD45RA</td>
<td>No</td>
<td>Remission of LPD Relapse of polyarthritis</td>
</tr>
</tbody>
</table>

*MTX discontinued for eight weeks during proven EBV infection 21 months prior to presentation with nodular sclerosing Hodgkin’s lymphoma. †MTX discontinued for two months during episode of intercurrent pneumonia. ‡MTX discontinued after 20 months due to disease remission, and recommenced after one year due to relapse.

MTX, especially as routine haematological monitoring is unlikely to alert physicians to the diagnosis. This has been reported in at least eight adult patients. The predominant type of lymphoma reported in adult patients with JIA who developed lymphoma is non-Hodgkin’s lymphoma, especially large B cell non-Hodgkin’s lymphoma with extranodal involvement. In two of the four previously reported cases of lymphoma in adult patients with JIA who developed lymphoma, EBV positive staining was shown in the lymph node biopsy specimens from two of four previously lymph node biopsied patients with JIA who developed lymphoma. The role of EBV in the pathogenesis of LPD in patients treated with MTX is supported at least in part by the observation of spontaneous complete remission of lymphoma on cessation of MTX therapy. It is not clear how physicians caring for children with polyarthritis should interpret these isolated case reports, as there is no epidemiological or proven causal association between therapeutic immunosuppression and the development of LPD. Another dilemma that has been raised by reports, as there is no epidemiological or proven causal association between therapeutic immunosuppression and the development of LPD is the risk of LPD in the group of patients treated with immunosuppressants. It is not clear how physicians caring for children in this group should interpret these isolated case reports. It is not clear how physicians caring for children in this group should interpret these isolated case reports. It is not clear how physicians caring for children in this group should interpret these isolated case reports. It is not clear how physicians caring for children in this group should interpret these isolated case reports.
REFERENCES