Dyslexia and familial high blood pressure: an observational pilot study

K Taylor, J Stein

Background: Developmental dyslexia is a neurodevelopmental learning disability characterised by unexpectedly poor reading and unknown aetiology. One hypothesis proposes excessive platelet activating factor, a potent vasodilator, as a contributor, implying that there should be a negative association between dyslexia and high blood pressure (HBP). Since both conditions have a partial genetic basis, this association may be apparent at the familial level.

Aims: To test this prediction in dyslexic and non-dyslexic children.

Methods: Individuals and families with (HBP+) and without (HBP−) a family history of HBP were compared.

Results: Proportionately fewer dyslexics (49/112) than controls (11/12) were HBP+. Families with multiple, all dyslexic children were less likely to be HBP+ (7/16) than those with a non-dyslexic child (11/11). Within families, mean child scores on reading were higher in the HBP+ group (mean 44.3, SE 0.95) than in the HBP− group (mean 40.3, SE 0.87).

Conclusion: HBP+ family history is associated with better performance on reading. The prediction of a negative association between dyslexic status and familial high blood pressure is therefore confirmed.

Abbreviations: HBP, high blood pressure; PAF, platelet activating factor
and parents (n = 6), parents’ parents only (n = 4), and parents’ grandparents (n = 1).

Classification of individuals

Individuals were classified as dyslexic if their BAS Reading was at least 10 T-score points (1 SD) below their BAS Similarities, or if they had an educational psychologist’s report stating that they were dyslexic. Most individuals in our sample fell into this category.

Individuals were classified as controls if they did not meet the above dyslexic criteria. There were 12 individuals in this category.

Questions

Two questions were asked. Firstly, were dyslexics and controls unevenly distributed between the HBP+ and HBP− groups? Fisher’s exact test was used to assess this for individuals.

Some of the 90 families in our study have one child participating, others more than one. However, as the families were selected for dyslexia in the children, inclusion of families with only one child could distort the analysis; since controls are concentrated in the multiple child families, family size is a potential confound. (All the children from families with only one child were dyslexic except for one control, whose dyslexic sibling was excluded from the study on grounds of age.) A better comparison was to take families with more than one child (n = 27), and look at the history of HBP in families where all the children were dyslexic (“all-dyslexic”; n = 16) with families where not all children were not dyslexic (“part-dyslexic”; n = 11). We predicted that “part-dyslexic” families would be more likely than “all-dyslexic” families to have a history of HBP. Fisher’s exact test was used to test this prediction.

Secondly, we asked whether the mean scores on age, sex (coded as male = 1, female = 2), and psychometric measures (expressed as age adjusted T-scores with mean 50, SD 10) differed significantly between the HBP+ and HBP− groups. If measures of general ability (BAS Similarities and Matrices) did not differ greatly, while measures of reading, spelling, and working memory (BAS Reading, Spelling, and Recall of Digits) did differ, that would suggest that the group with lower mean reading/spelling/working memory ability was “more dyslexic”. We note that not all individuals completed every task: for the HBP− group (n = 63), Recall of Digits n = 57, Spelling n = 60; for the HBP+ group (n = 49), Recall of Digits n = 42.

As the number of controls was small, and as they were from families at risk of dyslexia rather than from the general population, they could have had dyslexic tendencies or other characteristics which could distort the results. We therefore restricted the analysis to dyslexics only. To take account of family size, the unit of analysis was taken to be the family, and mean psychometric values were calculated for each family (dyslexic children only). An unpaired Student’s t-test was used to compare the groups, because statistical tests of normality indicated data were near normal (Shapiro–Wilk statistic: p = 0.024 for HBP− Spelling) or normal (Shapiro–Wilk statistic: p > 0.05 for all other HBP/psychometric groups). In all cases p < 0.05 was considered statistically significant.

Table 1: Psychometric scores for HBP+ and HBP− family comparisons

<table>
<thead>
<tr>
<th></th>
<th>HBP−</th>
<th></th>
<th></th>
<th></th>
<th>HBP+</th>
<th></th>
<th></th>
<th></th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Mean</td>
<td>SD</td>
<td>SE</td>
<td>n</td>
<td>Mean</td>
<td>SD</td>
<td>SE</td>
<td></td>
</tr>
<tr>
<td>Similarities</td>
<td>52</td>
<td>60.0</td>
<td>8.72</td>
<td>1.21</td>
<td>38</td>
<td>63.5</td>
<td>5.81</td>
<td>0.94</td>
<td>0.024</td>
</tr>
<tr>
<td>Matrices</td>
<td>52</td>
<td>53.1</td>
<td>6.25</td>
<td>0.87</td>
<td>38</td>
<td>55.7</td>
<td>6.74</td>
<td>1.09</td>
<td>0.062</td>
</tr>
<tr>
<td>Recall of Digits</td>
<td>47</td>
<td>40.0</td>
<td>8.28</td>
<td>1.21</td>
<td>33</td>
<td>45.6</td>
<td>10.3</td>
<td>1.80</td>
<td>0.009</td>
</tr>
<tr>
<td>Reading</td>
<td>52</td>
<td>40.3</td>
<td>6.25</td>
<td>0.87</td>
<td>38</td>
<td>44.3</td>
<td>5.84</td>
<td>0.95</td>
<td>0.003</td>
</tr>
<tr>
<td>Spelling</td>
<td>50</td>
<td>41.4</td>
<td>5.57</td>
<td>0.79</td>
<td>38</td>
<td>43.9</td>
<td>5.05</td>
<td>0.82</td>
<td>0.033</td>
</tr>
</tbody>
</table>

RESULTS

The HBP+ and HBP− groups did not differ significantly on age (HBP+: mean: 10.8 (2.15); HBP−: mean: 11.5 (2.20)) or sex (HBP+: 33 males, 27 females; HBP−: 40 males, 24 females). Dyslexics and controls did not differ significantly on age (dyslexic: mean: 11.3 (2.23); control mean: 10.3 (1.67)) or sex (dyslexic: 69 males, 43 females; control: 4 males, 8 females).

Fisher’s exact test

Despite the small numbers in our sample, we found significant differences (two sided significance level, p = 0.002) in the distribution of HBP+ and HBP− individuals between the dyslexic (49 HBP+; 63 HBP−) and control groups (11 HBP+; 1 HBP−). Because of the small numbers of controls, these results should be interpreted with caution. However, they are suggestive of a significant interaction between familial HBP and dyslexic status, such that the dyslexic group contains a smaller proportion of HBP+ group members.

Familial analysis for families with multiple children

Of the 16 “all-dyslexic” families, seven were HBP+ and nine were HBP−. All 11 of the “part-dyslexic” families were HBP+. The distribution of familial HBP differed significantly between these two groups (Fisher’s exact test: two sided significance level, p = 0.003).

t Test

To account for family structure, we compared mean psychometric scores of (dyslexic only) children in HBP+ (n = 38) and HBP− (n = 52) families using a t test. Statistically significant differences between HBP+ and HBP− families were seen for BAS Recall of Digits, Reading, and Spelling. Scores were significantly higher for the HBP+ group than the HBP− group. Similarities (verbal reasoning) showed the same pattern, though not to the same extent as Recall of Digits (working memory) and Reading. In short, a family history of HBP was associated with better performance on tests which dyslexics find comparatively difficult. Table 1 shows the mean psychometric scores for the HBP+ and HBP− family groups.

DISCUSSION

We have proposed the hypothesis that the phospholipid PAF may play a role in developmental dyslexia. This hypothesis predicts a negative association between dyslexia and HBP. Results of our pilot study indicate clear differences, in the direction predicted by the hypothesis, between children at risk for dyslexia with and without a family history of HBP. Even when only the dyslexic individuals in our sample were analysed, our results indicate that children from families with a history of HBP perform significantly better on psychometric tests of reading and spelling.

Sources of bias

Any study such as this which uses self report data from a questionnaire is open to problems. A common criticism is that some individuals may be more willing to report clinical...
conditions than others. In this case, individuals who themselves have a disorder may be more willing to report their clinical history; and women may be more willing to report than men. This form of bias can never be ruled out altogether in a questionnaire study. However, it is worth noting that:

1. At the time of the study, respondents to the questionnaire could not have been aware of the hypothesis specifically tested here, since it had not been published. Both parents in families with one or more dyslexic children were asked about a large number of clinical conditions. The aim of the study was to assess immune dysfunction, the prevalence of which is controversial in developmental dyslexia. 21–29

2. Since all families were taken from a cohort already investigated for dyslexia, there was unlikely to be a bias on the basis of dyslexic status.

3. A Fisher’s exact test (data not shown for reasons of space) indicated no statistically significant difference between male and female response rates to the questionnaire.

4. HBP+ and HBP− groups did not differ significantly on age, sex, and general ability, reducing the likelihood of bias caused by these factors. Moreover, the families have a similar socioeconomic background and come from the same geographic area (Central Southern England).

A potential source of bias which cannot be ruled out is that of non-response bias—whether the families not asked about their clinical history differed from those who were asked with respect to the relevant variables. Given the total lack of awareness of the hypothesis among the families, it is difficult to see what this difference could be. However, we hope to address this problem, and the problem of self-report bias, in a study currently being planned which will not use questionnaire data.

Finally, given the small numbers, and the fact that the sample from which control subjects were taken was a sample at risk from dyslexia, it is likely that the controls themselves have dyslexic tendencies. However, this should tend to decrease the likelihood of observing a statistically significant association between dyslexic status and HBP. Moreover, even when controls were excluded from the analysis, children with and without a family history of HBP still showed significantly different performances on reading related psychometric tasks. Families with a control child among the children were significantly more likely to have a history of HBP than families where all the children were dyslexic.

To summarise, we believe that this study is consistent with the PAF hypothesis of dyslexia. To our knowledge, no other hypothesis of developmental dyslexia has made this particular prediction or has proposed mechanisms which could explain this finding. This is not to say that there are not other mechanisms which could explain the observed relation between dyslexia and familial HBP. PAF is part of an extremely complex network of cytokines whose effects on intracellular signalling systems have yet to be disentangled. However, the prediction, which was specifically generated by the PAF hypothesis, has been confirmed; we consider therefore that the hypothesis may continue to serve as a basis for research. Whatever the causative mechanisms, we hope our study will help to make the important point that dyslexia is more than just a cognitive difference.

The instrument used in our study was a simple questionnaire asking whether parents of dyslexic children, or any of their relatives, had ever suffered from a range of clinical conditions (including immune disorders, developmental disorders, and numerous other conditions). Given the unrefined nature of this assessment and the small numbers in the groups, so clear a result was unexpected. It is possible, however, that the small numbers may have affected the results (although any such effect would arguably be likely to blur distinctions rather than enhance them). A study is currently being planned to see if the result can be replicated with larger numbers. In the meantime, we hope that since developmental dyslexia is now widely accepted as a brain based physiological condition, epidemiological studies of its comorbidity with other diseases could provide much needed clues to the underlying mechanisms involved.

ACKNOWLEDGEMENTS

We acknowledge all those who helped with the original data collection and who provided advice and facilities for this study, including Mrs Janet Walter and Dr Alex Richardson. We would also like to thank the two referees who reviewed the initial submission for their invaluable help and guidance. Funding was provided by the Wellcome Trust and the Dyslexia Research Trust.

REFERENCES

RAPID RESPONSES

Letters on the following papers have been published recently as rapid responses on the ADC website. To read these letters visit www.archdischild.com and click on “Read eLetters”

If you would like to post an electronic response to these or any other articles published in the journal, please go to the website, access the article in which you are interested, and click on “eLetters: Submit a response to this article” in the box in the top right hand corner.