Prevalence of antidelta in Turkish children with chronic hepatitis B infection

Delta hepatitis is caused by a dual infection with the hepatitis delta virus (HDV) and hepatitis B virus (HBV). HDV depends on the helper function of hepatitis B surface antigen (HBsAg) for its replication. Therefore, epidemiology of delta hepatitis usually follows that of HBV infection and it is particularly prevalent in endemic areas for HBV infection. The incidence of anti-HDV positivity appears to increase with age, especially among anti-HBe positive carriers. Infection with HDV occurs either as coinfection with the HBV or as superinfection in a chronic HBV carrier. Although it is often associated with progressive and chronic liver disease, the natural course may vary. To establish the prevalence of delta infection in children, we investigated total anti-delta using an ELISA system (Organon Teknica) in 206 children who were chronically infected with HBV (121 asymptomatic carriers, 59 with chronic persistent hepatitis, 13 with chronic active hepatitis, and 13 with cirrhosis) aged between 8 months and 17 years (mean SD) 7.76 (3.70) years. We detected anti-delta in only six patients (2.9%) in three with cirrhosis, two with chronic active hepatitis, and one with chronic persistent hepatitis. The ages ranged between 8 and 13 years. Four of them were positive for serum HBeAg and two were positive for anti-HBe. None of the asymptomatic carriers had anti-delta. When we take into consideration the prevalence of anti-delta in children with chronic liver disease it was 7.1% (six of 85 children with chronic hepatitis or cirrhosis). During four to seven years of follow up clinical and laboratory findings of our patients remained relatively stable.

Turkey has an intermediate endemicity for HBV infection and the prevalence of HBsAg carriers varies from 4% to 10% and among adult patients with chronic hepatitis B has been found up to 36% in prevalence studies. Parci et al. in Italy, found a prevalence of 12.5% of anti-delta in chronic hepatitis B infected children. However, in their study all children had chronic liver disease. The prevalence of anti-delta in Turkish children is lower than that in Italian children, even if we consider only the patients with chronic hepatitis or cirrhosis (7.1% vs 12.5%, respectively). There was no difference in the mean age of the patients and in the follow up duration between two studies. In Egypt a low prevalence of anti-delta in children was reported (4.2%), whereas Ruiz-Moreno et al. found a high prevalence in Spain (13%). The prevalence of anti-delta in adults in Italy is similar to our country. The route of transmission of HDV infection in children might be different in various countries. The percentage of delta infection parallels the severity of the disease; in our study anti-delta positivity was also high in patients with chronic active hepatitis (2/13) while none of asymptomatic carriers had anti-delta. As previously shown in children and adults, a correlation between chronic delta infection and presence of anti-HBe was not observed in our patients. Although it was believed that delta infection usually worsened the course of the disease, clinical and laboratory findings of our patients were stable, a finding similar to that found in the study of Bortolotti et al. We conclude that in our country the prevalence of HDV infection is not high during childhood, and prevalence increases with age suggesting that HDV infection is usually acquired as a superinfection rather than coinfection and vertical transmission is uncommon. The course of the disease is usually stable. The epidemiology of delta infection is different in various countries. To explain the differences in geographical distribution of HDV infection further studies are needed.

AYSEL YÜCE
NURTEN KOÇAK
HASAN ÖZEN

Figen Gürkan
Department of Paediatric Gastroenterology, Ankara Health Department, Faculty of Medicine, Ankara, Turkey (Correspondence to: Dr Aysegul Yuce, Hacettepe University, Çankırı Gastroenteroloji Unitesi, 06100 Ankara, Turkey)


Misdiagnosis of pancreatitis during valproate treatment in gastro-oesophageal reflux

Pancreatitis should always be suspected in patients with severe gastrointestinal symptoms during sodium valproate treatment. We report a child, receiving sodium valproate, in whom we misdiagnosed pancreatitis because of high serum amylases, which were later shown to be mainly of salivary origin (90%). We believe that a combination of gastro-oesophageal reflux plus the use of crushable sodium valproate (rather than enteric coated) led to ulcerative oesophagitis and absorption of lymein and a toxic reaction.

A 16 year old, severely retarded child was admitted to the hospital because his epilepsy worsened. Ten days later the boy was reported to be having ‘fits’ of a new type: electroshock-like jerks, sweating, and hyperventilation provoked by turning the body, washing, and feeding. Feeding became difficult because of frequent attacks and associated chewing.

He was suspected of having pancreatitis caused by his sodium valproate treatment. Serum amylases rose rapidly to 3000 (normal 70-300) U/L. Valproate treatment was discontinued. Parenteral fluids were administered for four weeks and as a complication of this subclavian catheter he acquired bacterial sepsis and candida infection. Oesophagoscopy showed haemorrhagic ulceration of the oesophagus and gastro-oesophageal reflux. Surprisingly, 90% of the total serum amylase was of salivary origin and 10% of pancreatic origin. As he did not have pancreatitis, valproate was restarted, but now as enteric coated tablets. After revision of the subclavian catheter, and some days after starting antibiotics, he became afebrile and sepsis abated. His convulsions, both the original type and his new ‘fits’, became infrequent, and he was discharged.

His grandparents indicated that at home he was fed in a sitting position and the valproate was given as enteric coated tablets, whereas in hospital he was fed in a supine-recumbent position and crushable valproate tablets were used. The valproate, which is acid, was probably rapidly absorbed, and was locally irritating to the stomach and oesophagus. It may be that in these conditions, luminal amylase, which normally does not cross the gastric or intestinal mucosa, enters the blood or lymphatics.

R RIKONEN
Children’s Hospital, University of Helsinki, Sätemäki 11, Helsinki 00290, Finland


Vasculitis associated with valproamide and circulating autoantibodies

Valproamide is used in relapsing nphritis syndrome or as an adjuvant treatment to surgery in colon cancer. Three cutaneous vasculitides have been reported in adults on valproamide.2, 3 No information is available on circulating autoantibodies in this condition. We would like to report a girl who had steroid dependent minimal change idiopathic nephrotic syndrome since the age of 6 years. The disease course was positively influenced by long term medication with valproamide and prednisone. Levalampe was stopped on two occasions but had to be resumed because of nephrotic relapses. At the age of 11.5 years, while continuing treatment with levalampe 1.2 mg/kg daily and prednisone 0.06 mg/kg every second day, the girl developed fever, arthralgia, and a non-palpable purpuric rash with a livedo pattern, chiefly on the breast, face, and arms. Physical and laboratory investigations failed to show signs consistent with systemic illness. Circulation for per nuclear antineutrophil cytoplasmic autoantibodies (titre 1:2560) were detectable by indirect immunofluorescence on ethanol fixed granulocytes and a characteristic cytoplasmic reaction was obtained on formalin fixed granulocytes. However, at most only border-