LETTERS TO THE EDITOR

Lag time for children with brain tumours

We read with considerable interest the paper by Edgeworth et al highlighting the failure of physicians to recognise often vague symp-

Rms and/or signs as markers of serious disease, especially childhood brain tumours.1 We previously studied the time interval (designated lag time) between the first symp-
tom and/or signs and confirmed diagnosis in an unselected cohort of children with cancer including 28 with brain tumours, and found that for brain tumours the lag time of 13 weeks far exceeded the interval for all other tumours2 (5 weeks for acute lymphoblastic leukaemia, bone tumours 8.4 weeks, neph-

roblastomas 2.8 weeks). There have been two other published series on lag time in brain tumours of childhood. Flores et al in Atlanta found a symptom interval of 26 weeks for 79 children.3 Only 38% of the brain tumour patients were diagnosed within one month of symptom onset compared with 84% for those with renal tumours, and 80% for childhood leukaemia. 

Pollock et al in St Louis reported a lag time of 9.4 weeks for 380 children with a variety of brain tumours.4 The site of tumour and histological type does appear to affect lag time. Flores et al noted mean lag times of 43.4 and 10.8 weeks respectively for sup-

ratentorial and infratentorial tumours and also shorter lag times for those with more marked symptoms and signs. Two of these series have reported that younger patients present earlier.5 It has been argued that even with vague symptoms and signs, younger children are both more likely to be brought to medical attention because of parental anxiety or in any case are being seen more regularly for other routine health surveillance purposes (for example vaccinations). Self reporting in older children and adolescents is more of a 'hit and miss' process. Despite these findings our south east Scotland study failed to show any influence of length of lag time on clinical outcome.6 Edgeworth et al have essentially assessed one component of lag time, namely the time for doctors to recognise the significance of signs or symptoms once a child is brought to their attention.1 Incorrect diagnosis will pro-
duce a greater amount of parent and patient anxiety let alone resettling. Ongoing medical education must be programmed to try to prevent such delays. However, for the majority of children the other components, namely the time from first symptom or sign to when medical advice is sought, and the time to get through the system and receive appropriate treatment, may be essentially related to inherent tumour char-

cteristics and health care provision respec-
tively, together make the major contribution to length of lag time. We are conducting a prospective study attempting to clarify the contribution of each of these components to the overall lag time. From all the published work to date the greatest contribution does appear to be related to inherent tumour character-

istics which in turn determine the mode of presentation. Before parents blame them-

selves or doctors for delayed diagnosis we need to emphasise these other aspects of tumour presentation.

O B EDEN
Christie Hospital NHS Trust,
Bridge Road, W11 8BX
Manchester M20 4BX

V SAHA
Department of Paediatric Oncology,
St Bartholomew's Hospital
West Smithfield,
London EC1A 7BE


Is microalbuminuria progressive?

We read with interest the article by Shields et al on the question whether microalbuminuria is progressive or not.1 Our data, presented at the 21st Annual Meeting of the ISPAD in Linköping,2 are fully in line with the conclu-
sions of this work. In 1984 we identified 14 children and adolescents as having persistent microalbuminuria (urinary albumin excre-
tion (UAEx) 30-300 mg/day) with insulin dependent diabetes mellitus (median age 15.2 years; median duration of diabetes 5.7 years). Eight cases showed HLA DR3-DR4. A regular follow up for six years of these microalbuminuric patients allowed us to follow their progress: two developed mac-

albuminuria, five remained microalbum-

uminuric without presenting a significant increase in UAEx, and seven remained stably normal, after a period of microalbuminuria of between 1 and 5.5 years. These latter patients did not differ from those remaining micro-

albuminuric either as regards degree of meta-

bolic control or UAEx levels during follow up, whereas they did differ as regards a higher prevalence (6/7) of cases with onset of diabetes in peripuberal age. Shield et al did not report data regarding age or pubertal stage of the single microalbuminuric patients; we feel this finding could be important in that it could be the pubertal factor which differentiates the natural history for micro-

albuminuria in childhood from that of adult-

hood. Puberty, with its important hormonal changes, could in fact act as ‘exercise test’ for the kidney of predisposed subjects; this would lead to a deterioration which, limited to the pubertal period, would be temporary. Supporting this hypothesis is the fact that six of our 10 patients (all females) with intermit-
tent microalbuminuria, occurring at the beginning of puberty, reverted to normal at the end of puberty itself, that is after menarche.

The predictive value for later overt nephrop-
microalbuminuria is therefore poor among children and young adults and this possible spontaneous normalisation of microalbuminuria should be taken into ac-

count when evaluating the effects of interven-
tional drug treatment in patients of this age.

SILVANA SALARDI
EMANUELE CACCIARI
Pisa Paediatric Clinic,
University of Pisa
Via Massarenti 11,
40138 Pisa, Italy

Dr Shield comments:

This report is now the third to challenge the predictive value of microalbuminuria defined as 20–200 μg/min (30–300 mg/day) in child-

hood and adolescence as a recent article from Rudberg and Dahlquist reached similar con-

clusions.1 The implications of microalbumin-

uria in this age group need to be addressed prospectively in a large cohort of patients before embarking on either routine clinical screening or interventional trials. A study (microalbuminuria in diabetic adolescents and children, MIDAC), currently in the pilot stage, will address the prevalence and pro-
gegression of abnormal albumin excretion in approximately 2000 patients. Its relationship with glycemic control, blood pressure, and pubertal status which we agree may be of importance in defining the longer term implications of microalbuminuria.

2 Salardi S, Ticconi M, Zucchinli S, Stier L, Mazzanti L, Cacciari E. Evolution of micro-

3 Rudberg S, Dahlquist G. Determinants of progression of microalbuminuria in adoles-


Mycoplasma infection and Kawasaki disease

We report for the first time a case of mycoplasma infection complicated by Kawa-

saki disease, and discuss possible mecha-

nisms.

A 6 year old boy presented with two days of sore throat, fever, vomiting, and abdominal pain. Examination revealed pharyngitis and cervical lymphadenopathy. Jaundice and ten-
der hepatomegaly developed the next day. Investigations revealed a leukocytosis (white cell count 18.7 × 10⁹/l), deranged liver function (bilirubin concentration 73 μmol/l, alanine transaminase activity 316 units/l), and positive immunofluorescence for IgM to Mycoplasma pneumoniae, with a fourfold rise in antibody titre to greater than 256. Testing for other causes of hepatitis was negative. Mycoplasma hepatitis was diagnosed, and treatment with azithromycin started.

His fever persisted, and bilateral conjunctivi-
tis, raised erythrocyte sedimentation rate (ESR) (maximum 125 mm/hour), thrombocy-
tosis (maximum 846 × 10⁹/l) on day 9, dis-
tended gall bladder on ultrasound scan on day 11 and periungal desquamation devel-

oped. A 17 day cardiac ultrasound examina-
tion was normal.

Kawasaki disease was diagnosed, based on the persistent fever, pharyngitis, cervical lymph-

adenopathy, bilateral conjunctivitis, raised ESR, thrombocytosis, and periungal desquamation. A distended gall bladder on ultrasound scan is found in 3% of patients with Kawasaki disease.7 Treatment with intravenous