Assessment of pulmonary mechanics and breathing patterns during posturally induced glossoptosis in infants

F Cozzi, M Bonanni, D A Cozzi, P Orfei, S Piacenti

Abstract
Respiratory mechanics were studied in nine infants with glossoptosis-apnoea syndrome to determine whether glossoptosis may account for signs of both inspiratory and expiratory airway obstruction. Airflow, oesophageal pressure, inspiratory and expiratory time (T1 and T2), and inspiratory and expiratory resistance (Ri and Re) were measured before and during ventilatory phases characterised by glossoptotic pharyngeal obstruction, induced by turning the infants onto their backs. In addition, an attempt was made to correlate the abnormalities in pulmonary mechanics with the clinical features. During partial glossoptotic pharyngeal obstruction, a significant increase was observed in T1, Re and variable changes in T2 and Ri. During severe obstruction, the infants displayed obstructed inspiratory efforts often associated with stridor, as well as obstructed expiratory efforts often associated with audible grunting and retarded expiratory flow pattern. The expiratory grunt was loudest over the neck and mimicked bronchospasm over the chest. These findings indicate that glossoptotic pharyngeal obstruction induces functional airway obstruction which may affect both inspiration and expiration. Expiratory airway obstruction seems, at least in part, to be due to active braking of expiratory flow.

Keywords: congenital micrognathia, choanal atresia, oesophageal atresia.

Congenital micrognathia, choanal atresia, and oesophageal atresia, may be associated with maturational dysautonomia. The ensuing disorder is characterised by overactivity of many vagal reflexes involved in the regulation of several autonomic functions including respiration, sucking, swallowing, heart rate, body temperature, sweating, and salivation.

In infancy, the respiratory problems due to maturational dysautonomia are similar to those described in adults and children with sleep-apnoea syndrome. The main pathogenic factor is an abnormal control of upper airway dilating muscles which may fail to counterbalance the upper airway constricting forces generated by inspiratory efforts. This upper airway instability results in recurrent episodes of functional upper airway obstruction, in part due to relapse of the tongue, referred to as 'glossoptosis' by Robin. Since sleeping is not an essential prerequisite for the occurrence of obstructive apnoea in infancy, we suggested that in infancy the term glossoptosis-apnoea syndrome should be used instead of sleep-apnoea syndrome.

Glossoptotic pharyngeal obstruction — like any variable extrathoracic obstruction — impedes the inspiratory phase of respiration, causing inspiratory dyspnoea. However, some 50% of infants with glossoptosis-apnoea syndrome surprisingly present with signs not only of inspiratory airway obstruction but also of expiratory airway obstruction, particularly during crying, exertion, or respiratory infections. These episodes are often diagnosed as 'bronchiolitis' or 'asthmatic attacks'.

To determine whether glossoptosis should be considered a cause of both inspiratory and expiratory airway obstruction, investigations were carried out on the pulmonary mechanics during glossoptotic pharyngeal obstruction in nine infants with glossoptosis-apnoea syndrome, attempting to correlate the physiological abnormalities with the clinical features.

Methods
The criterion for patient selection was the presence of one or more clinical manifestations of glossoptosis-apnoea syndrome in infants with congenital micrognathia, choanal atresia, or oesophageal atresia. The main clinical features of the nine infants studied are summarised in table 1. Patients Nos 1, 2, and 3 had oesophageal atresia with a lower tracheoesophageal fistula. Patient No 2 had mild respiratory problems and later developed failure to thrive. Patient No 4 had marked congenital micrognathia. Patient No 5 had congenital micrognathia associated with cleft palate. Patient No 6 had hemifacial microsomia with severe hemimandibular hypoplasia. Patients Nos 7, 8, and 9 had bilateral choanal atresia.

Informed consent from the parents was obtained before investigations in all nine infants. Infants Nos 1-3 and 5 were studied during sleeping after feeding. Patients Nos 4 and 6-9, who were scheduled to undergo elective surgery, were studied after administration of ketamine (5 mg/kg intramuscularly) immediately before surgery. Ketamine was used because it does not impair the patency of the upper airway. To obtain glossoptotic pharyngeal obstruction we changed the posture of the infants from lateral to supine position.

The oesophageal pressure (P_{oes}^\uparrow) was measured with an 8F plastic feeding tube filled with water and kept free of bubbles by flushing...
inspiratory flow was similar to that described by Roberts et al in infants with congenital micrognathia,7 that is, a sharp reduction in flow during late inspiration (fig 2). During glossoptotic pharyngeal obstruction no attempt was made to validate the Poes recording by the use of the occlusion test on account of the poor transmission of alveolar pressure to the airway opening.

The inspiratory \(T_i\) and expiratory \(T_e\) times were measured on the flow tracing. During absence of flow tracing, the times of inspiratory and expiratory efforts were measured on the Poes tracing. The mean of the respiratory cycle was used as a measure of the respiratory rate (60/\(T_i + T_e\)). Airway inspiratory \(R_i\) and expiratory \(R_e\) resistance were calculated by the method of Frank et al,7 slightly modified.8 Mean \(T_i\), \(T_e\), \(R_i\), and \(R_e\) for each patient were calculated manually (over 7-10 breaths) from consecutive inspirations and expirations on sections of the trace taken before and during partial glossoptotic pharyngeal obstruction. Mean Poes, \(T_i\), and \(T_e\) for each of the seven patients with severe glossoptotic pharyngeal obstruction was calculated manually (over 5-10 breaths) from consecutive respiratory attempts on a section of the trace taken during severe glossoptotic pharyngeal obstruction. Data were analysed using Student's paired \(t\) test.

Results

Ventilatory Periods During Partial Glossoptotic Pharyngeal Obstruction

All infants had recurrent episodes of glossoptotic pharyngeal obstruction in the supine position. Episodes of spontaneous obstruction were also observed in the lateral position.

During the episodes of partial glossoptotic pharyngeal obstruction, \(T_i\) increased significantly in six infants, and decreased or failed to significantly change in three, whereas \(T_e\) increased significantly in all infants (table 2). Group mean respiratory rate decreased from 65 (SEM 4.5) to 50 (2.8) breaths/min (\(p < 0.05\)).

The \(R_i\) increased significantly in five infants and decreased or showed no significant changes in four, while \(R_e\) increased significantly in all patients (table 3). Group mean \(R_i\) increased from 82.6 (12.9) to 171.9 (31.2) (\(p < 0.03\)), whereas group mean \(R_e\) increased from 59.3 (14.3) to 184.9 (14.3) cm H2O/litre/s (\(p < 0.001\)). During partial glossoptotic pharyngeal obstruction, Poes swings remained in the negative range throughout the entire breathing cycle. Small end expiratory positive pressure swings were detected at the end of the partial obstruction.

Ventilatory Periods During Severe Glossoptotic Pharyngeal Obstruction

Seven patients (patients Nos 1, 3, and 5-9) had episodes of severe glossoptotic pharyngeal obstruction. Infants Nos 5 and 6 had episodes of spontaneous severe obstruction even in the lateral position.

In comparison with partial glossoptotic pharyngeal obstruction, during severe obstruction, group mean respiratory rate decreased signifi-
Table 2 During episodes of partial glossoptotic pharyngeal obstruction (GPO) variable changes occur in inspiratory time whereas a significant increase occurs in expiratory time. During severe GPO both inspiratory time and expiratory time show an increase; values are mean (SEM)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Inspiratory time (ms)</th>
<th>Expiratory time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before GPO</td>
<td>Partial GPO</td>
</tr>
<tr>
<td>1</td>
<td>242(13)</td>
<td>616(48)†</td>
</tr>
<tr>
<td>2</td>
<td>332(10)</td>
<td>606(14)‡</td>
</tr>
<tr>
<td>3</td>
<td>310(4)</td>
<td>334(6)†</td>
</tr>
<tr>
<td>4</td>
<td>550(13)</td>
<td>432(127)‡</td>
</tr>
<tr>
<td>5</td>
<td>856(16)</td>
<td>576(62)†</td>
</tr>
<tr>
<td>6</td>
<td>445(44)</td>
<td>511(68)</td>
</tr>
<tr>
<td>7</td>
<td>580(52)</td>
<td>518(47)§</td>
</tr>
<tr>
<td>8</td>
<td>408(13)</td>
<td>524(14)‡</td>
</tr>
<tr>
<td>9</td>
<td>500(57)</td>
<td>628(125)*</td>
</tr>
</tbody>
</table>

Comparison between values before and during partial GPO and during partial and severe GPO.
* p < 0.05; † p < 0.01; ‡ p = NS.

Table 3 During episodes of partial glossoptotic pharyngeal obstruction (GPO) inspiratory resistance shows variable changes whereas expiratory resistance shows a significant increase; values are mean (SEM)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Inspiratory resistance (cm H2O/1l)</th>
<th>Expiratory resistance (cm H2O/1l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before GPO</td>
<td>During GPO</td>
</tr>
<tr>
<td>1</td>
<td>103.0(12.6)</td>
<td>377.0(46.7)†</td>
</tr>
<tr>
<td>2</td>
<td>37.7(5.2)</td>
<td>112.7(6.0)‡</td>
</tr>
<tr>
<td>3</td>
<td>97.9(8.4)</td>
<td>324.4(30.9)‡</td>
</tr>
<tr>
<td>4</td>
<td>11.2(3.1)</td>
<td>147.5(42)†</td>
</tr>
<tr>
<td>5</td>
<td>78.8(13.3)</td>
<td>98.9(14.7)§</td>
</tr>
<tr>
<td>6</td>
<td>107.2(29.4)</td>
<td>144.9(29.5)§</td>
</tr>
<tr>
<td>7</td>
<td>47.4(10.7)</td>
<td>133.3(15.5)‡</td>
</tr>
<tr>
<td>8</td>
<td>76.6(5.4)</td>
<td>70.9(11.4)‡</td>
</tr>
<tr>
<td>9</td>
<td>184.0(28)</td>
<td>137.5(16)§</td>
</tr>
</tbody>
</table>

* p < 0.05; † p < 0.01; § p = NS.

Discussion
The most important data emerging from our study during episodes of partial glossoptotic pharyngeal obstruction were: (1) slowing of the breathing rate due mainly to prolongation of T1 and T2 (table 2). During these phases with low respiratory rates, all seven patients had inspiratory Poes swings which were often biphasic and coincided with partially or totally obstructed inspiratory flow (fig 2). Clinically, inspiration was accompanied by severe retractions which were more evident at the jugular incision, and by paradoxical movements of the anterior chest wall, little or no air entry, and often an audible stridor.

During severe glossoptotic pharyngeal obstruction, the expiratory Poes swings were mainly positive. There was a phasic increase in expiratory Poes swings which coincided with a phasic increase in retardatory expiratory flow (fig 2). At the end of expiration, the retarded expiratory flow coincided with either a drop in positive Poes swings for some breaths, or with an increase in positive end expiratory Poes swings for other breaths (fig 2). Expiration was accompanied by contraction of the anterior abdominal wall muscles and often by audible expiratory grunting which was loudest over the neck and more distant over the chest, where it mimicked bronchospasm.

During episodes of partial glossoptotic pharyngeal obstruction we found: (1) a further decrease in the breathing rate; (2) increasing obstructed inspiratory efforts (equivalent of Muller's manoeuvre) often associated with stridor; (3) increasing obstructed expiratory efforts (equivalent of Valsalva's manoeuvre); and (4) retarded expiratory flow often associated with audible grunting. These findings are similar to those observed in children and adults with sleep-apnoea syndrome. During the phase of obstructive sleep-apnoea, comparable studies in respiratory mechanics may detect increasing inspiratory efforts against a closed upper airway. The obstructed inspiratory efforts are associated with an increase in expiratory resistance on account of positive gastric pressure or phasic expiratory activity of the abdominal muscles. The contractions of the expiratory muscles during sleep-apnoea may produce an audible expiratory flow. In addition, recording flow at high sensitivity, Sanders et al found a retarded expiratory flow which in adults with sleep-apnoea syndrome is associated with obstructed inspiratory flow.

This expiratory flow pattern suggests that there may be a reduction in upper airway muscle activity during both inspiration and expiration. Alternatively, this retarded expiratory flow in adults with sleep-apnoea may indicate a prolonged active expiratory phase.

The retarded expiratory flow pattern frequently observed in the present series of infants is not unlike that of active expiration...
Muller-Valsalva manoeuvres or the associated hypoxaemia in infants with chronic upper airway obstruction may cause, as in patients Nos 5 and 6, severe complications including pulmonary hypertension, non-cardiogenic pulmonary oedema, and cor pulmonale. The enlarged small pulmonary arteries and the peribronchial cuff of pulmonary oedema may compress the small airways, resulting in expiratory wheezing. An alternative explanation is that the dynamic collapse of the larger airways during forced expiration increases the resistance to airflow and produces expiratory wheezing.

Another hypothesis is that a forced flow passing through a narrow glottic orifice may produce expiratory wheezing, thus simulating bronchospasm. The latter theory was first formulated in the attempt to explain clinical findings and results of lung function testing in patients with psychogenic wheeze. In these patients, like the infants in the present study, wheezing shows maximum intensity over the neck and may mimic bronchospasm over the chest. Rodenstein et al postulated that psychogenic wheezers have an emotional exaggeration of the normal physiological mechanism, which is addition of the vocal cords during expiration. A similar hypothesis has recently been advanced to explain the pathophysiology of wheezing of the 'fat happy wheezers'. In these infants, Steneno and Hutchinson have speculated that wheezing may be due to an overactive reflex in defence of lung volume or a delay in disappearance of the normal neonatal subclinical grunting pattern of expiration. The latter concept could explain why wheezing disappears spontaneously in many infants.

In our patients, increased expiratory resistance during partial glossoptotic pharyngeal obstruction was associated with increased inspiratory resistance (table 3). In addition, during severe glossoptotic pharyngeal obstruction the expiratory grunt was associated with a partial or totally obstructed inspiration. These findings suggest that the upper airway instability is the primary defect. The recurrent episodes diagnosed as 'bronchiolitis' or 'asthmatic attack' may therefore be sustained by recurrent episodes of partial or severe glossoptotic pharyngeal obstruction triggered by an increase in respiratory efforts, as with crying, exertion, or respiratory infection. The ensuing lower airway instability brings about a grunting expiration which may simulate a bronchial obstruction.

Further studies are necessary to support the concept that glossoptotic pharyngeal obstruction should be added to the list of surgically correctable causes of upper and central airway obstruction responsible for wheezing (that is, laryngotracheomalacia, or extrinsic compression of the airway by vascular ring, mediastinal masses, or enlarged lymph nodes). If this view is proved correct, more severe cases of recurrent wheezing related to glossoptotic pharyngeal obstruction in infancy may require stabilisation of upper airway by glossopexy to relieve most of the symptoms.
and prevent additional respiratory pathology and sequelae.