Persistent increase in plasma and urinary leukotrienes after acute asthma

A P Sampson, D P Castling, C P Green, J F Price

Abstract
Leukotrienes may mediate bronchoconstriction in asthma. Cysteinyl leukotriene production rises in vivo after allergen challenge, but few reports describe leukotriene concentrations in clinical asthma or in children. Using high performance liquid chromatography/radioimmunoassay, plasma and urinary leukotrienes in asthmatic children (aged 5–10 years) were measured during an acute exacerbation (peak expiratory flow (PEF) <65%, n=10) and one month later (PEF 74–169%, n=9), and in non-atopic normal children (aged 1.3–13.2 years). In the asthmatics, geometric mean (95% confidence interval) plasma leukotriene B₄ (LTB₄) was 746 pg/ml (398 to 1403) acutely and 1026 pg/ml (662 to 1593) in remission, compared with 369 pg/ml (167 to 728) in the normal children (n=14). Plasma cysteinyl leukotrienes were low or undetectable, but urinary leukotriene E₄ (LTE₄) was higher in the asthmatics during an acute episode (210 pmol/mmol creatinine, 101 to 454) and at follow up (179 pmol/mmol, 110 to 293), compared with the normal children (98 pmol/mmol, 81 to 118, n=4). This persistent increase in plasma LTB₄ and urinary LTE₄ concentrations one month after a severe asthmatic episode suggests leukotriene production is related to chronic inflammation rather than to acute bronchoconstriction.

(Keywords: leukotrienes, asthma)

It is increasingly accepted that products of lymphocytes of the Th₂ subtype including interleukin (IL)-5 and IL-3 may regulate the inflammatory activity of eosinophils and mast cells within the asthmatic lung.¹ These cells can generate a variety of mediators, toxic enzymes, and oxygen radicals which may account for the airflow obstruction, epithelial damage, and airway hyperresponsiveness of asthma.

Among these products are the lipid mediators cysteinyl leukotrienes (leukotriene C₄ (LTC₄), leukotriene D₄ (LTD₄), and leukotriene E₄ (LTE₄)), which abundant evidence implicates in airflow obstruction in asthma.² They are potent inducers of bronchoconstriction,³ mucus hypersecretion,⁴ and airway oedema.⁵ LTE₄ concentrations, used as a marker of whole body cysteinyl leukotriene production, rise after challenge of asthmatics with inhaled allergen⁶ and exercise.⁷ Cysteinyl leukotriene receptor antagonists inhibit both early and late bronchoconstrictor responses to allergen and block the associated increase in bronchial responsiveness,⁸ and they improve lung function and reduce symptoms in chronic asthma.⁹

In contrast, the possible role of leukotriene B₄ (LTB₄) in asthma is unclear. However, it is the most potent lipid chemotaxin known for neutrophils, which are implicated in sudden onset fatal asthma¹⁰ and in nocturnal asthma,¹¹ and also chemotactants monocytes, lymphocytes, and eosinophils.¹² In vitro, LTB₄ induces Th2 lymphocyte production of IL-5,¹³ which may promote eosinophilia in asthma and atopy, and augments the stimulatory effects of IL-4 on immunoglobulin E production by B lymphocytes.¹⁴ LTB₄ can be generated by a range of cells within the lung, including mast cells and macrophages,¹⁵,¹⁶ and has been implicated in neutrophil infiltration after segmental allergen challenge in the human lung.¹⁷ LTE₄ has been reliably detected in the bronchoalveolar lavage fluid of asthmatic subjects.¹⁸

Previous work by our group has shown a two to fivefold increased capacity for LTB₄ and LTD₄ generation in vitro by the peripheral blood polymorphonuclear leucocytes of stable atopic asthma children stimulated by calcium ionophore or formyl-met-leu-phe.¹⁹,²⁰ In vivo, such an exaggerated leukotriene synthetic response to immunological stimulation within the asthmatic lung might contribute significantly to bronchoconstriction, chronic inflammation, and bronchial hyperresponsiveness.²¹

We aimed therefore to use combined high performance liquid chromatography (HPLC)/radioimmunoassay techniques to assay LTB₄, LTD₄, and LTE₄ in the plasma, and LTE₄ in the urine, of asthmatic children admitted to hospital with an acute exacerbation, and at follow up at least one month later after clinical improvement. Attempts were made to reduce the possible confounding effects of anti-inflammatory medication, and concentrations were compared with those in a control group of normal children with no personal or family history of allergic disease.

Subjects and methods
CLINICAL CHARACTERISTICS OF SUBJECTS
Permission for the study (No B81/89) was obtained from the ethics committee of King’s College Hospital. Ten children with acute asthma (aged 5–10 years) were admitted with acute dyspnoea and wheezing. Peak expiratory flow (PEF) was <65% of predicted, with nine.
out of 10 having PEF <40% predicted. All had taken inhaled β2-agonists, but only one out of 10 was on inhaled corticosteroids, two were receiving sodium cromoglycate, and none were receiving theophyllines. All had a close family history of atopy, and skin prick tests were positive (two or more allergens) in four subjects tested. Blood and urine samples were taken before treatment with systemic steroids was begun.

Nine of the 10 asthmatic children provided blood and urine samples at follow up at least one month after the acute episode. All were well with PEF 74–169% of predicted. Although all had received systemic corticosteroid treatment for five days after admission, none had received systemic steroids for at least 25 days preceding the follow up visit. Only two out of nine children were receiving inhaled corticosteroids, and none had received theophyllines for at least 14 days.

Normal children (aged 1.3–13.2 years) with negative personal and family histories of atopy provided blood (n=14) or urine (n=41) as controls. All were healthy with no history of chronic respiratory disease and none were receiving medication.

SAMPLE COLLECTION

Blood (10 ml) was taken into a heparinised syringe containing the 5-lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA; 50 μM; Sigma) and the cysteinyl leukotriene bioconversion blockers L-serine-borate (30 mM) and L-cysteine (10 mM), to prevent generation or catabolism of leukotrienes in vitro. Urine was collected into a sterile container on ice and an aliquot sent for creatinine determination.

LEUKOTRIENE ASSAYS

Leukotrienes were assayed as described by us. Briefly, samples are spiked with tritiated (3H) leukotriene internal standards before methanol extraction and partial purification on octadecylsiline cartridges (Sep-Pak, Waters). Leukotrienes are separated by high performance liquid chromatography using a C18 column (Techsphere 250×46 mm) with a methanol/water/acetic acid (75/25/0.01; pH 5-6) solvent system, and quantified by radioimmunoassay.

STATISTICAL ANALYSES

Power calculations on previous data from normal children suggested that differences in geometric mean urinary LTE4 concentrations of approximately twofold would be detectable with 80–90% probability in groups of 12–15 subjects each. No reliable data were available with which to perform similar calculations for plasma leukotriene comparisons. Plasma and urinary leukotriene concentrations approximated most closely to log10 normal distributions, and values are therefore given as the geometric mean and 95% confidence interval (CI). Comparisons between groups were made by paired or unpaired Student’s t tests on log normalised values.

RESULTS

LTB4 CONCENTRATIONS IN PLASMA

Plasma LTB4 concentrations (fig 1) were above detection limits in all subjects except one normal. Geometric mean (95% CI) plasma LTB4 concentrations were 746 pg/ml (398 to 1403) in the asthmatic subjects during the acute exacerbation (n=10), twice that in the normal subjects (geometric mean 369 pg/ml, 95% CI 167 to 728; n=14); however, this did not reach statistical significance (p=0.097). Geometric mean plasma LTB4 concentrations rose further at follow up to 1026 pg/ml (662 to 1593; n=9), which was significantly higher than in the normal subjects (p=0.012).

CYSTEINYL LEUKOTRIENE CONCENTRATIONS IN PLASMA

Plasma concentrations of LTC4 and LTD4 were below detection limits (<50 pg/ml) in all asthmatic patients studied (n=6) both acutely and at follow up, and in all normal subjects studied (n=6; data not shown).

Plasma concentration of LTE4, however, were detected in 11 out of 14 normal subjects, and in all asthmatic patients both acutely and in remission (fig 2). In the asthmatics, geometric mean (95% CI) plasma LTE4 concentrations were 314 pg/ml (191 to 517) during the acute exacerbation (n=10) and 348 pg/ml (189 to 643) at follow up (n=9). Neither of these concentrations was significantly greater (p>0.3) than the plasma LTE4 concentration in normal subjects (geometric mean 232 pg/ml, 95% CI: 132 to 406; n=14). The high variability in the normal plasma LTE4 concentrations means that the power of the study to detect small group differences is relatively low. However, enhancement of the same magnitude as that observed with LTB4 (2-9-fold),
Persistent increase in plasma and urinary leukotrienes after acute asthma

Persistent increase in and higher hyperresponsiveness. The demonstration that acute bronchoconstriction, later during cysteinyl leukotrienes, may correlate with low plasma concentrations (urinary LTE4 values <50 pmol/ml) in all subjects, but LTE4 and LTB4 were detected in most normal and asthmatic subjects at concentrations similar to those found by other workers using HPLC/radioimmunoassay techniques. However, venous plasma LTE4 was relatively low and highly variable, and failed to fully reflect the significantly increased cysteinyl leukotriene production in the asthmatic children that was observed in urinary LTE4 concentrations. Moreover, plasma LTE4 concentrations did not correlate with urinary LTE4. This lack of sensitivity suggests that plasma LTE4 measurements may not be useful as an adjunct to LTE4 urinalysis.

LTE4 concentrations in urine are used as a marker of whole body production of cysteinyl leukotrienes because a fixed proportion (4–6%) of 3H-LTC4 infused intravenously in man emerges as 3H-LTE4 in the urine within four hours, irrespective of the dose administered. Several studies have described an asthmatic episode, and were significantly higher than normal at the one month follow up. This supports the concept of an involvement of LTB4 in chronic inflammation in asthma which may be up-regulated by an acute exacerbation.

Our previous findings that both LTB4 and LTE4 are highly stable in whole blood in vitro suggested these leukotrienes as the targets of choice for leukotriene measurement in the circulation. However, leukotrienes are generated in vivo in very small molar quantities, and biological fluids contain non-specific immunoreactivity that interferes with immunoassays. The importance of internal radiolabelled leukotriene standards, solid phase extraction on C18 cartridges, and HPLC to purify leukotrienes in biological fluids before immunoassay has been well documented. Many early studies of leukotriene concentrations in plasma did not fulfill these methodological requirements, so that early reports of raised concentrations of cysteinyl leukotrienes and of LTB4 in the plasma of asthmatics must now be treated with caution. In our studies LTC4 and LTD4 were undetectable (<50 pmol/ml) in all subjects, but LTE4 and LTB4 were detected in most normal and asthmatic subjects at concentrations similar to those found by other workers using HPLC/radioimmunoassay techniques. However, venous plasma LTE4 was relatively low and highly variable, and failed to fully reflect the significantly increased cysteinyl leukotriene production in the asthmatic children that was observed in urinary LTE4 concentrations. Moreover, plasma LTE4 concentrations did not correlate with urinary LTE4. This lack of sensitivity suggests that plasma LTE4 measurements may not be useful as an adjunct to LTE4 urinalysis.

LTE4 concentrations in urine are used as a marker of whole body production of cysteinyl leukotrienes because a fixed proportion (4–6%) of 3H-LTC4 infused intravenously in man emerges as 3H-LTE4 in the urine within four hours, irrespective of the dose administered. Several studies have described an asthmatic episode, and were significantly higher than normal at the one month follow up. This supports the concept of an involvement of LTB4 in chronic inflammation in asthma which may be up-regulated by an acute exacerbation.

Our previous findings that both LTB4 and LTE4 are highly stable in whole blood in vitro suggested these leukotrienes as the targets of choice for leukotriene measurement in the circulation. However, leukotrienes are generated in vivo in very small molar quantities, and biological fluids contain non-specific immunoreactivity that interferes with immunoassays. The importance of internal radiolabelled leukotriene standards, solid phase extraction on C18 cartridges, and HPLC to purify leukotrienes in biological fluids before immunoassay has been well documented. Many early studies of leukotriene concentrations in plasma did not fulfill these methodological requirements, so that early reports of raised concentrations of cysteinyl leukotrienes and of LTB4 in the plasma of asthmatics must now be treated with caution. In our studies LTC4 and LTD4 were undetectable (<50 pmol/ml) in all subjects, but LTE4 and LTB4 were detected in most normal and asthmatic subjects at concentrations similar to those found by other workers using HPLC/radioimmunoassay techniques. However, venous plasma LTE4 was relatively low and highly variable, and failed to fully reflect the significantly increased cysteinyl leukotriene production in the asthmatic children that was observed in urinary LTE4 concentrations. Moreover, plasma LTE4 concentrations did not correlate with urinary LTE4. This lack of sensitivity suggests that plasma LTE4 measurements may not be useful as an adjunct to LTE4 urinalysis.
increase in urinary LTE4 in susceptible asthmatic adults after challenge with allergen, exercise, and aspirin. Relatively few studies have examined urinary LTE4 excretion in relation to the variable lung function of clinical asthma. Taylor and colleagues found increased urinary LTE4 in 20 adult asthmatics admitted to hospital for an acute exacerbation. Only eight of these asthmatics were re-examined at follow up, and in these subjects urinary LTE4 concentrations had not fallen significantly, despite systemic corticosteroid and theophylline treatment resulting in a return to normal lung function. Increased urinary LTE4 has also been found in a significant proportion of stable adult asthmatics. In our study, urinary LTE4 concentrations were approximately double normal values both acutely and in remission in asthmatic children suggesting chronic overproduction of the cysteinyl leukotrienes.

There is overwhelming evidence for chronic inflammation in the bronchial mucosa even in mild asthma. Inflammation is a variety of resident cells, including mast cells and macrophages, and infiltrating cells, such as eosinophils, which are capable of generating leukotrienes in response to IgE dependent stimulation. The source of the enhanced plasma LTB4 and urinary LTE4 we have observed cannot be ascribed with certainty to any one cell type. However, chronic overproduction of LTC4 and LTB4 by cells stimulated by persistent inhalation of environmental allergens might have profound effects beyond anaphylactic bronchoconstriction. The cysteinyl leukotrienes may impede airflow by constricting bronchial smooth muscle, inducing mucus secretion, and promoting airway oedema, but in addition, LTD4 has recently been shown to be a highly potent and specific chemotaxin for human eosinophils in vitro, and inhaled LTE4 may also directly induce the eosinophil infiltration characteristic of the asthmatic lung. The putative source of LTD4 is more problematic, as mast cells can generate only limited amounts, while we have shown bronchial mucosal lavage cells (blood and lung macrophages) to have a markedly downregulated capacity for LTB4 synthesis in vitro in mild asthma. Nevertheless, long term production of LTB4 within the bronchial mucosa may cause infiltration of neutrophils and monocytes into the lung, and the chemotactic potency of LTB4 towards eosinophils is often overlooked. Moreover, eosinophils primed by specific factors such as IL-5 respond readily to the non-specific chemotaxins LTB4 and IL-8, and LTD4 may itself promote the production of IL-5 from T lymphocytes.

Our work supports the concept that cysteinyl leukotrienes may have a role in the chronic inflammation in the bronchial mucosa in asthma, and that this may underlie the early indications of an anti-inflammatory and steroid sparing effect of cysteinyl leukotriene receptor antagonists in current clinical trials. The possibility of an involvement also of LTB4 in chronic asthma in children strengthens the case for the further development of 5-lipoxygenase inhibitors which may counteract the actions of both classes of leukotriene. Further studies are called for to investigate the effects of 5-lipoxygenase inhibitors on leukotriene production in long term studies in health and disease.

This study was greatly aided by invaluable advice and guidance from the late Priscilla J Piper, Vanderbilt Professor of Pharmacology at the Royal College of Surgeons, whose untimely death deprived the field of inflammation research of one of its leading exponents.

APS is supported by the Frances and Augustus Newman Foundation, and DPC by the Royal Air Force. We thank Dr R Sherwood (Department of Clinical Biochemistry, King's College Hospital) for performing creatinine analysis on Ford-Hutchinson (Merck-Frosst Canada) for the kind gift of LTB4 antiserum, and Professor B Peskar (University of Graz, Austria) for generously donating the cysteinyl leukotriene antiserum.

Persistent increase in plasma and urinary leukotrienes after acute asthma