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STATISTICS FROM THE INSIDE

15. Multiple regression (1)

M J R Healy

Regression equations with two or more x's
In a previous article in this series I described
some aspects of the simple regression model,
where the mean of a variate y is related to a
quantity x in a linear (straight line) fashion.
With some formality we can write

E(y x)=a+x

In this equation ot is the value ofy where the
line crosses the y axis, and is often called the
intercept; L is the slope of the line, the amount of
increase in y per unit increase in x. E(y x) is
mathematicians' notation for a mean value
(misleadingly called an expectation) and the
vertical bar shows that the mean is that ofy for
a particular value of x, a conditional mean (com-
pare the conditional probabilities that I wrote
about in an earlier note). The usual name fory
is the dependent variate; x goes by various
names, notably the predictor or covariate or
(misleadingly, as we shall see) the independent
variate. Obvious examples are where y might
be the response to a drug and x the dose; or y
the head circumference of a baby and x the
baby's weight. Notice the important assump-
tion of linearity; this means that a given change
in x corresponds to a fixed change in y, no
matter where it starts from.
One use of the regression equation is to

predict the value ofy that might correspond to
an observed value of x on a future occasion.
The prediction will not of course be perfect,
and the observed value ofy will differ from that
which is predicted by the equation. The differ-
ence is usually called a residual. The sizes of the
residuals can be summarised by quoting their
standard deviation (their mean is exactly zero),
and this is called the residual standard deviation
or residual standard error. Roughly speaking,
around 95% ofthe residuals can be expected to
fall short of twice the residual standard devia-
tion.

It is a natural extension of this idea to
use two or more covariates simultaneously to
predict the value of y. This leads to a multiple
regression equation. Starting simply, consider
the miniature example in table 1 which shows
measurements of height, weight, and chest cir-
cumference of 10 army cadets.
The mean chest circumference is 102-6 cm

with a standard deviation of 6-78 cm and this
suggests that most future measurements of
chest circumference from the same population
might fall in the range mean ±2 SD, 89 to 116
cm, a width of 27 cm. The standard deviation
thus measures our degree of uncertainty

concerning the chest circumference of a random
individual from this population. We could try to
reduce this by predicting chest circumference
from height or from weight by doing simple
regressions. The standard calculations show
that the regression coefficient on height is
-0A43 (SE 048) giving a residual standard
deviation of 6&86 cm; that on weight is +092
(SE 0.17) with residual standard deviation of
3-32 cm. Comparing the coefficients with their
standard errors, it appears that height is useless
as a predictor in this small sample. Weight on
the other hand may be quite successful, with a
highly significant regression coefficient. These
conclusions are confirmed by the reduction (or
lack of it) in the residual standard deviation -
compared with the previous value of 27 cm, the
±2 SD interval measures 27-4 cm when the
subject's height is allowed for, 13-3 cm when
weight is allowed for.
What about using them both simultane-

ously? We need to estimate a relationship of
the form

E (y XIX2)=t+PlXl+P2X2
where y stands for chest circumference and
x1,x2 for height and weight respectively. With
only two covariates this is not an impossible
task for a pocket calculator but multiple regres-
sion calculations can become quite heavy and a
good computer package is desirable. Most
packages provide the same items of informa-
tion in different guises; I have chosen the
Nanostat package (Alphabridge Ltd, 26
Downing Court, London WC1N ILX) with
which I am personally familiar. The computer
output is shown in table A.

This is rather a formidable amount of infor-
mation for a fairly simple problem and it is
important not to be intimidated by it. It is most
easily read from the bottom up. You will see
that the estimated equation can be written as

Chest circumference
= 132*66-0-54746Xheight+095709Xweight

Table 1 Measurements on army cadets

Height (cm) Weight (kg) Chest circumference (cm)

167-9 71-8 107-3
183-8 75-1 105-2
172-9 58-0 93-4
175-5 58-4 91-9
176-4 67-7 99-8
168-5 75-2 113-4
178-0 71-3 103-7
178-0 67-3 98-1
175-4 75-9 108-4
171-2 65-3 105-2
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Dependent variable CHEST

df SS MS F p
Regression 2 388.09 194.05 51.82 0.0001
Residual 7 26.214 3.7448
---------------------------------------------------------------__

Total 9 414.30 46.034

Variance accounted for = 91.9%

Residual s.d. taken to be

Regression coefficients

1.9352

Table 2 Chest circumferences

Observed Predicted Residuals

107-3 109-46 -2-16
105-2 103-91 +1-29
934 93-51 -011
91 9 92-47 -0 57
99-8 100-88 -1-08
113-4 112-38 +1-02
103-7 103-45 +0-25
98-1 99-62 -1-52
108-4 109-28 -0-88
105-2 101-43 +3-77

-0.54746 0.13455
0.95709 0.098896
132.66 23.851

t

-4.069
9.678
5.562

Table A Regression of chest circumference on height and weight

where the coefficients are taken from the
column marked b*. Looking at the standard
errors of the coefficients and the corresponding
t values, it is apparent that both of them are
highly significant, the coefficient of height
being negative.

This last illustrates a very important fact
about the coefficients in a multiple regression
equation (they are called partial regression coeffi-
cients). The negative height coefficient might
seem to say that taller men tend to have smaller
chest circumferences, contrary to intuition.
This is not at all the correct inference. Each
coefficient in a multiple regression measures
the effect of its x variable when the other x's in
the equation have been allowed for ('partialled
out' is the phrase that is sometimes used). The
height coefficient measures the effect of height
on chest circumference among men all of a

given weight; it is very plausible that there will
be some short fat ones and some tall thin ones,
giving rise to the negative relationship in the
equation.
We need a measure of the closeness of the

regression relationship, and this will be pro-
vided by the amount of scatter of the observed
points away from the regression. This in turn is
measured by the residuals, the departures of
the observed y values from those predicted by
the regression equation. As we have seen, the
scatter of the residuals can be summarised by
their standard deviation, the residual standard
deviation which you will see given in the com-

puter output in table A. The actual residuals
in our example are given in table 2 and the
residual variance can be obtained by summing
their squares and dividing by the degrees of
freedom. We have estimated a constant term
or intercept and two slope coefficients and these
use up 3 degrees of freedom, leaving 7 for the
residual SD. We can see that the residual SD
of 1 9352 cm is much smaller than the original
SD of 6-78 cm and indeed less than that of
3-32 cm achieved by predicting from weight
alone.
The residual SD can also be obtained, along

with other information, from the analysis of
variance table which is at the top of the
computer output (I introduced the analysis of

variance in an earlier article in this series but
did not have the nerve actually to show one).
A more precise name for this would be an
analysis of sums of squares. You can check that
the Total sum of squares in the column headed
SS is just the usual sum of squares of the 10
chest circumferences about their mean with its
(10-1)=9 degrees of freedom. This is usually
calculated by hand by first obtaining the crude
sum of squares (simply the sum of the squared
observations) and then subtracting the 'correc-
tion for the mean', a term depending only
upon the mean value and the sample size. In a

very similar way the sum of squares of the
residuals can be got by taking the sum of
squares about the mean and subtracting a term
depending upon the regression coefficients.
This latter term is the one labelled 'Regression'
in the analysis of variance table. Since two
unknown coefficients have been estimated, it
has 2 degrees of freedom. Both the residual
degrees of freedom and the residual sum of
squares can be calculated by making the
corresponding columns of the table add up.
Then dividing the residual sum of squares by
its degrees offreedom we get the residual mean
square, which is another name for the variance
of the residuals. The square root of this is the
residual standard deviation. You may like to
check that the sum of the squares of the resid-
uals in table 2 is equal (rounding errors apart)
to that given by the indirect method of calcula-
tion represented by the analysis of variance
table.
We can also get a mean square from the

Regression line in the table. Comparing this
with the residual mean square provides an F
test of the hypothesis that both of the true coef-
ficients are zero. In this example, the F value is
very highly significant as would be expected.

Goodness of fit
How well have we succeeded in fitting the
variation in our data? There are various ways of
answering this question. We have already seen
that the original standard deviation of 6-78 cm
has been reduced to 1-94 cm. Squaring these
figures, the original variance was 46-0 and this
has been reduced to 3-7. The reduction in
variance is 42-3 which is 92% of the starting
value - we can say that 92% of the original
variance has been 'accounted for' by the
regression relationship, a figure which appears
in the computer output in table A. I note that
most computer packages at this point provide a
quantity called the multiple correlation coeffi-
cient, denoted by R2. This is actually the ratio

b

HEIGHT
WEIGHT
Constant term

se

*For clarity I have repeated the coefficients from the computer
output with their five significant figures. In real life, these
should be rounded off to three significant figures or so.

Healy
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15. Multiple regression (1)

z
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Residual

Normal plot of chest circumference residuals
(NED=Normal Equivalent Deviate).

of the Regression sum of squares
sum of squares. It has the dr
adding a further predictor to t
inevitably increases R2, making th4
ter when this may be unjusti
example, the simple regression 4

cumference on height gives an
(R=0-30 - sounds quite good),
residual variance is actually larg
with no covariate - the variance a
is - 2-4%! Elaborate correction fc
been derived to cope with this, t
seems to me to be unnecessary.
squares are really no more thar
steps in the calculations - the meal
the interpretable quantities, and
goodness of fit is best based upoi
multiple correlation coefficient i
from the early days of statistics, M
tion and coefficients for measurin
the rage, and it is nowadays best a
The use either of R2 or the p

variance accounted for is subj
important qualifications. First, it
assumed that a very high value
example, implies a fit that is close
given practical application. Kno
and weight, we can predict a n4
chest circumference with an un
around 4 cm either way. This is ne
tailoring purposes but may be in

df SS MS F
Regression 1 326.10 326.10 29.5
Residual 8 88.206 11.026
------------------------------------------------------

Total 9 414.30

Table B Regression of chest circumference on weight

Regression on df SS MS F
Weight 1 326.10 326.10 29.5
then Height 1 61.99 61.99 16.5
Residual 7 26.214 3.7448
------------------------------------------------------

Total 9 414.30

Table C Regression of chest circumference on weight,

Regression on df SS MS F
Height 1 37.355 37.355 0.7
then Weight 1 350.74 350.74 93.6
Residual 7 26.214 3.7448
------------------------------------------------------_

Total 9 414.30 46.034

Table D Regression of chest circumference on height p

more demanding circumstances. The actual
o size of the residual standard deviation is far

more important than its relation to some other
quantity. Moreover, both measures tacitly
assume that the denominator, the original
variance or sum of squares, is a meaningful
quantity, and this in turn assumes that both the
y's and the x's constitute a random sample
from a suitable population. We shall see later
that this is by no means always the case.
A more searching examination of the good-

ness of fit of the regression involves inspection
of the individual residuals, which we have seen

2 3 4 in table 2 (any statistical package worthy of the
name will calculate these for you). This is best
done graphically. One question is whether one
or two of the points lie unduly far away from
their predicted values - the residual in the last

to the Total line of table 2 looks a little large, for example.
awback that A Normal plot of the residuals is shown in the
the equation figure, and this confirms that the 10th observa-
e fit look bet- tion may be a little extreme - did this sturdy
fled. As an fellow really weigh only 65 kg? It will often be
of chest cir- worth plotting the residuals against each of the
R2 of 0-09 x's to see whether the assumption of a linear
whereas the relationship is a plausible one.
er than that
ccounted for
)rmulas have The analysis ofvariance
but their use The analysis of variance table has not played a
The sums of major pArt in the example above, but it is worth
i convenient a little further study ifonly for future reference.
n squares are To begin with, we can use it to track the results
the index of of fitting one covariate and then another. If we
n them. The use the Nanostat program to fit weight as a
is a leftover single covariate, the resulting analysis of
vhen correla- variance table is shown in table B.
ig it were all The Total sum of squares is of course the
voided. same as before and the regression has
ercentage of accounted for an amount 326 10 with 1 degree
ject to two of freedom. If you go back to the original
must not be analysis of variance for the regression with two
, as in our x variables (table A), you will see that the
enough for a regression on both height and weight
swing height accounted for an amount 388-09 with 2
ew subject's degrees of freedom. This means that adding
icertainty of height to the equation using weight alone has
t too bad for accounted for an extra sum of squares of
isufficient in 388-09-326-10=61-99 with 1 degree of

freedom. We can thus write the original
analysis of variance table in an extended form

0.0006 as in table C.
The F ratio of 16-55 for height after weight

has 1 degree of freedom on top and so must be
the square of a t value. Indeed, if you will look
at the original regression output in table A, you
will see that the t value for the height coeffi-

p cient is 4-069, which is just the square root of
85 0.0048 16-55. To this extent, the two analyses are

telling exactly the same story. However, the
corresponding t value of 9-678 for weight is by
no means the square root of 29-58, the F ratio

plus height in the first row of table C; for this we need the
alternative split of the 2 degrees of freedom for

p regression obtained by doing the simple regres-

96 0 sion on height first and then adding weight
0.0000

(table D).

------------ Now the F value of 93-66 for weight after
height is just the square of the t value of 9-678

lus weight from the original analysis in table A. Both the
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Healy

Table 3 Rectal
temperature, axillary
temperature, and heart rate

Rectal Axillary Heart rate

36-8 36-0 73
36-4 35-8 74
37-6 36-8 83
37-3 36-5 84
37-0 36-5 82
37-2 36-7 81
38-0 37-3 92
36-8 36-3 74
37-5 36-7 85
37-7 36-9 83

t values in the original
significance of the corre
after the other one has been
we need two analysis of
analysing the same body c
A rather similar lookini

in table 3. This shows tk
temperatures and heart r
we do the regression of b
temperature variables the
shown in table E. (Noticc
the constant term - the e
rate when both temperatu
sensible display of the resi
(temperature -37) for eac
Looking at the coefficient
errors, this looks pretty dis
t values are around 1 and
meaningful significance 1l
heart rate is not predictab
ture variables. But now Ic
variance. The F ratio is si
0002 level! This says tha
hypotheses 1PI=O and ,B
plausible, while the join'
P2=0) is not. Have we ar
tion within a single metho
sis?
By no means. Ifwe con

gressive analyses ofvarian
in table F. Rectal tempera
an effective predictor, bu
temperature does very litt]

But the other prog
variance is quite similar (tg
temperature by itself is a E
it is in the equation, there
in rectal temperature. T
variables are essentially te
Either one alone is an

Dependent variable HR

Regression
Residual

df
2
7

SS
265.06
51. 843

MS
132.53
7.4061

Total 9 316.90 35.211

Variance accounted for = 79.0%

Residual s.d. taken to be

Regression coefficients

b

RECTAL
AXILLARY
Constant term

4.4243
7.5867

-360.91

2.7214

se

6. 6465
7.4047
76.744

Table E Regression of heart rate on rectal and a

Regression on df SS MS
Rectal 1 257.28 257.28
then Axillary 1 7.78 7.78
Residual 7 51.843 7.4061
-------------------------------------------------.

Total 9 316.90 35.211

Table F Regression of heart rate on rectal plus i

Regression on df SS MS
Axillary 1 261.78 261.78
then Rectal 1 3.28 3.28
Residual 7 51.843 7.4061
-------------------------------------------------.

Total 9 316.90 35.211

Table G Regression of heart rate on axillary plu

analysis assess the
sponding x variable
allowedfor. Note that
f variance tables for
)f data.
set of data is shown

ie rectal and axillary
ates of 10 babies. If
ieart rate on the two
computer output is
the absurd value of

stimated mean heart
ires are zero. A more
ults would have used
ch of the x variables.)
ts and their standard
sappointing - the two

given either one, there is no need for the
other.

This example along with the previous one
illustrates the most important lesson to be
borne in mind when confronted with the
results of a multiple regression analysis. The
magnitude, the significance, and the inter-
pretation of a partial regression coefficient all
depend upon what other covariates are
included in the equation. There is in general
no such thing as the effect of an x on a y; we
need to know what other x's are involved and
whether they are being controlled for. We
should really write the multiple regression
equation in the form

E(y XlIX2)=t+P.2XI+P2 lX2

far from any kind of so that each of the coefficients refers to the
evel. It appears that other x variable as well as to its own.
le from the tempera- This underlines the essential problem of
)ok at the analysis of interpreting observational (as opposed to
ignificant beyond the experimental) data, such as are the rule in
it the individual null epidemiological investigations. With such data
2=0 are both quite it is always difficult to ensure that all the
t hypothesis (P =0, relevant x variables have been considered
rived at a contradic- and properly allowed for. In an experimental
)d of statistical analy- setting, the effect of one x variable on another

can be eliminated by a careful choice of treat-
struct one of the pro- ments, and the possibility of overlooked x
ce we get the analysis variables can be coped with by the device of
Lture by itself is quite randomisation, a topic I hope to return to in a
it adding in axillary later article. This is the reason why experi-
le extra good. mental findings are, potentially at least, more
ressive analysis of firmly based than those of purely observational
able G). Now axillary studies.
good predictor but if It is worth inquiring a little more closely
is no point in adding into the cause of the trouble in the last
he two temperature example. The problem arises from the fact
lling the same story. that the two x variables are closely correlated
excellent predictor; - this is the statistical version of my remark

that they are both telling the same story. Two
such covariates (for reasons based upon the
underlying mathematics) are said to be almost

F P collinear. One effect of collinearity is to
17.89 0.0018 produce imprecise estimates of the coeffi-

---------------- cients, with large standard errors. Although
the computer output does not disclose the
fact, the estimates themselves are also closely
correlated - if one is too big by chance, the
other will almost surely be too small. The
opposite of collinear is orthogonal; orthogonal

t variables are essentially uncorrelated. The
reason for introducing these new terms is that

0.666 the x variables do not (as we shall see) have to
1.025 be statistical variates for which correlation-4.703

language is appropriate.
axillary temperature When two covariates are nearly collinear, it

is often helpful to do the regression on the dif-
34.5 00004 ference between them as one predictor and34.52 0.0004
1.05 0.3396 their sum or mean as the other. These new

covariates for our example are shown in
table 4. The regression output using them is
shown in table H.

axillarv temoDerature Note that this is exactly the same regression
F p as before - the intercept is the same, so is

37.99 0.0003 the residual standard error and so (if you0.44 0.5284 work them out) are the predicted values. We
---------------- have simply expressed it in terms of more

convenient variables. It will be seen that
s rectal temperature there is (much as might be expected) a very
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15. Multiple regression (1) 181

Table 4 Temperature difference, mean temperature, and
heart rate

Difference Mean Heart rate

0-8 36-40 73
0-6 36-10 74
0-8 37-20 83
0-8 36-90 84
0 5 36-75 82
05 36-95 81
0-7 37-65 92
05 36-55 74
0-8 37-10 85
0-8 37 30 83

Dependent variable HR

df SS MS F p
Regression 2 265.06 132.53 17.89 0.0018
Residual 7 51.843 7.4062
---------------------------------------------------------------__

Total 9 316.90 35.211

Variance accounted for = 79.0%

Residual s.d. taken to be 2.7214

Regression coefficients

b se t

DIFF -1.5812 6.9553 -0.227
MEAN 12.011 2.1230 5.658
Constant term -360.91 76.744 -4.703

Table H Regression of heart rate on difference and mean of rectal
and axillary temperatures

significant regression on the mean of the two
temperatures, while the difference between
them has no appreciable effect. This kind of
approach is often useful with other pairs of
closely correlated covariates, notably systolic
and diastolic blood pressure.

Curve fitting
Multiple regression in its standard form, as
described above, is a handy technique to have
available but does not play a major part in
everyday medical statistics. It can, however,
be generalised in all sorts of directions. As a
first example of this, note that the covariates
in a regression equation are completely
unrestricted. Suppose that we relate a body
measurement to age, but that the relationship
when plotted is obviously not a straight line.
We shall probably need age itself as a covariate
but there is nothing to stop us including age2,

log(age), \-e, or combinations of these and
other variables related to age itself. The only
restriction is that the equation must only
contain the coefficients as simple multipliers -.
terms such as e1x or log(a+ px) require more
complicated methodology.
The form of curve that is usually tried in an

attempt to fit a curved line is the polynomial
E(y) =Po+pIt+12t2+03 t3+...

with as many terms as necessary. In principle
this can be fitted as a multiple regression
equation, with xl = t, x2= t2 and so on. In
practice there are difficulties. When higher
powers are introduced, the successive terms
can become closely collinear, leading to large
standard errors. Some improvement in this
respect can be had by choosing the origin of
the t variable somewhere near the middle ofthe
data points. As well as this, polynomials often
behave irregularly near the ends of the data,
and they certainly should never be extra-
polated outside the range of the actual data
points. Royston and Altman have recently
pointed out that there is no need to be
restricted to integer powers of t, and that per-
mitting the use of terms in lit, \/i etc gives
improved flexibility.' Berkey et al have used a
curve which can be written as

E(y)=o+Otx+I210X+ P3/x+ /x2

to fit height measurements on children aged
from 8 to 18 years.2 Other curves which have
not been much exploited are the trigonometric
series

E(y) = o+ R1sint+ ,2cost+ P3sin2t+ 4cos2t+...

The usefulness of these is not confined to
periodic phenomena.
There are in fact an enormous number of

possible curves which can be fitted using
multiple regression. Choice of a curve, includ-
ing the number of terms to include in a poly-
nomial or other series, should be guided by
careful inspection of the residuals.

1 Royston P, Altman DG. Regression using fractional poly-
nomials of continuous covariates: parsimonious parametric
modelling. Applied Statistics 1994; 43: 429-67.

2 Berkey CS, Laird NM, Valadian I, Gardner J. The analysis of
longitudinal growth data with covariates. In: Tanner JM,
ed. Auxology 88: Perspectives in the science of growth and
development. London: Smith-Gordon, 1989: 31-9.
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