extracerebral: (i) there was little evidence of midline shift, which in view of the size of the bleeding would argue against its location within the brain substance; (ii) this was almost a ‘chance’ finding in an apparently healthy neonate, suggesting very little brain damage in itself; and (iii) there was no residual tissue loss on follow up ultrasound scan.

In case 7 (fig 6) the text describes a cerebral contusion, which in my view is synonymous with intracerebral haemorrhage of somnolent type. This label was not big enough to explain the amount and type of tissue loss seen on follow up.

Finally there seems to be little doubt that in patients 1, 5, and 7 obvious mechanical difficulties during delivery, in the absence of clinical signs of hypoxic-ischaemic encephalopathy or bacteraemia, preceded tissue loss within an arterial region of the cerebrum (twice the middle cerebral artery). Whether or not this observation is legally treacherous we tend to leave to solicitors and judges as a matter of eternal debate. From a medical point of view the association stands.

Brain uptake of amino acids in intravenously fed preterm infants

Sir,—Up to 500000 infants, mostly preterm, in Britain alone have received the intravenous amino acid solution, Vamin 9 (Kabi Pharmacal). Hyperphenylalaninaemia is often induced by Vamin 9, resulting in speculation about brain damage, as in phenylketonuria (PKU). In PKU cerebral damage probably follows excessive brain uptake of phenylalanine with competitive suppression of uptake of other neutral amino acids to perhaps critically low levels. To explore whether such deranged brain uptake of amino acids might occur in intravenously fed preterm infants, sequential plasma samples were analysed for amino acids as described previously in 336 preterm infants below 1850 g birth weight under going neonatal care. Brain fluxes of amino acids were calculated from amino acid profiles using a rat model experimentally derived by the second author. Infants were divided into three groups: (1) those never receiving Vamin 9, (2) those who received Vamin 9, and (3) infants on Vamin 9 who developed hyperphenylalaninaemia (peak plasma phenylalanine >300 μmol/l).

The table shows data on mean plasma concentrations and calculated mean brain uptake values for neutral amino acids (excluding tryptophan which was not measured). These are compared with corresponding values for normal children and those with untreated and treated PKU.

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
<th>Group 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Vamin</td>
<td>Vamin-9</td>
<td>Vamin-9 (peak phenylalanine >300 μmol/l)</td>
<td>Normal children</td>
<td>Untreated PKU</td>
<td>Untreated PKU</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>P</td>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>69</td>
<td>5-9</td>
<td>125</td>
<td>5-9</td>
<td>463</td>
<td>5-9</td>
</tr>
<tr>
<td>Methionine</td>
<td>22</td>
<td>1-7</td>
<td>33</td>
<td>1-6</td>
<td>92</td>
<td>1-7</td>
</tr>
<tr>
<td>Histidine</td>
<td>137</td>
<td>4-5</td>
<td>144</td>
<td>4-9</td>
<td>240</td>
<td>4-7</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>59</td>
<td>1-9</td>
<td>102</td>
<td>1-7</td>
<td>81</td>
<td>1-8</td>
</tr>
<tr>
<td>Threonine</td>
<td>238</td>
<td>1-4</td>
<td>214</td>
<td>1-6</td>
<td>252</td>
<td>1-5</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>144</td>
<td>4-2</td>
<td>225</td>
<td>4-1</td>
<td>824</td>
<td>4-1</td>
</tr>
</tbody>
</table>

| Mean plasma values; μmol/l (D) and estimated mean brain fluxes; nmol per min/g brain (T). Groups 1–3 are values in preterm infants; groups 4–6 are values published for comparison |

The marked brain uptake of phenylalanine, seen in PKU, did not occur in any of the groups of preterm infants. Furthermore, competitive suppression of methionine, histidine, isoleucine, threonine, and tyrosine seen in untreated PKU was not seen in Vamin 9 fed preterm infants. Hypertyrosinaemia, commonly seen in preterm infants, did not appear to result in increased brain uptake of tyrosine. These findings probably reflect the concomitant increase of competing amino acids during intravenous nutrition, in contrast to the isolated hyperphenylalaninaemia in PKU.

Some caution is required in extrapolating results of an animal model to preterm infants in whom alterations, for example, in cerebral blood flow and blood brain permeability could theoretically influence the results; and the absence of tryptophan data could have affected our calculations. Nevertheless, these concerns are theoretical and kinetics of cerebral amino acid uptake have been shown generally to apply across species, including man.3

Recently we showed that hyperphenylalaninaemia induced by Vamin 9 was not associated with an adverse developmental outcome at 18 months.1 The data presented here provide a potential explanation, as it is unlikely that hyperphenylalaninaemia could have damaged the brain if cerebral uptake of amino acids was unaffected. These preliminary data, therefore, do not provide a biological basis for the view that Vamin 9 could damage the brain.

A LUCAS
MRC Dunn Nutritional Laboratory, Downham Lane, Milton Road, Cambridge CB4 1XJ

O E PRATT* Department of Neuropathology, Institute of Psychiatry, London SE5 8AF

*Sadly Dr Pratt died before completion of this work

M J WHITTLE
Professor of fetal medicine

BOOK REVIEW

Molecular biology appears to be coming the cornerstone of medicine and infiltrates itself into all aspects. This book is designed to provide obstetricians with the fundamentals of molecular biology and molecular genetics, although I rather fear that its style will discourage many from reading it in detail. The information available is fascinating, but it takes some effort to extract it from the book’s text and although a student of the subject will be keen to read through the various chapters, I fear that a busy obstetrician and gynaecologist will not indeed what they require is a ‘quick-fix’ and easy access to their understanding on the subject.

To some extent the book appeared to be almost in two halves. The first deals with the more basic information on the genome and the second, which is really subdivided into two parts both technical and practical, discusses the more fundamental molecular biological problems. Although it is not clear whether one or other of the authors was involved separately with these parts, there is some overlap particularly between the human genetic and perinatal diagnosis chapters. There are some interesting omissions which probably reflect that this book is about molecular biology rather than genetics. For example there is no discussion of Robertsonian translocation and the terms ‘expression’ and ‘penetrance’ are not used or defined.

I think this book has many admirable qualities and certainly, for the reader who has time, will provide a wealth of useful information concerning molecular biology. Unfortunately, I fear that many obstetricians and gynaecologists will not find it, to use the common colloquialism, user-friendly, although undoubtedly an understanding of the language of molecular biology will become imperative for all of us in the near future.