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Mineral transport across the placenta

S M Husain, M Z Mughal

We here review the transport of three minerals
which have in common their role in bone
mineralisation, their active transport across
the placenta, and the rise in their placental
transport rate in late gestation. The growing
and differentiating human fetus is entirely
dependent on its mother for the supply of
nutrients and oxygen and removal of waste
products. In mammals, through most of ges-
tation this exchange process takes place across
the placenta, a highly complex organ which
also has other functions. Despite much
research, the physiology of placental exchange
and especially its control remains a poorly
understood subject.
To follow the literature, it is important to

have a basic understanding of the concepts
and terminology involved, which in the case of
calcium are shown schematically in fig 1.
By the end of normal human pregnancy the

fetus acquires approximately 28 g calcium,
16 g phosphorous and 0-7 g magnesium,
mostly during the third trimester (fig 2).
Calcium, which is not only required for skele-

',
U)

0.

U)
0
Coau)

E
.5

co
0

* Calcium
A Phosphorus
* Magnesium

20 H

10 F

0

1 'R
E
._

a)
C
0)m

o0 E
0 10 20 30 40

Gestational age (weeks)

Figure 2 Totalfetal content of calcium, phosphorus, and
magnesium with increasing gestational age (adaptedfrom
Widdowson').

tal mineralisation but also acts as a regula-
tor for a variety of intracellular functions,
has attracted most attention from research
i-e orkers in this field. It is, therefore, given
most emphasis here.
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Figure I Schematic representation of transtrophoblastic movement of calcium.
Bidirectionalflux is shown with netflux across the cells. J,,1=difference between
unidirectional maternofetalflux amf) and unidirectionalfetomaternalflux (_7f ).
Movement of calcium may also take place through hypothetical aqueous
transtrophoblastic channels (which are often called paracellular channels by analogy with
other barriers such as capillary endothelium but this term is not strictly correct for the
placenta as the trophoblast is a syncytium), shown by the broken arrows. Approximate
ionised calcium concentration is shown by [ I; Ca, calcium; CaBP, calcium binding
proteins; MBS, maternal blood space; MVM, microviUous membrane; SCT,
syncytiotrophoblast; FBS, fetal blood space; BLM, basolateral membrane; ER,
endoplasmic reticulum; MTC, mitochondria; ATP, adenosine triphosphate; ADP,
adenosine diphosphate; *: calcium transport protein; *: Ca-A TPase; 1, 2, 3: see text.
(Fetal capiUary wall is not shown.)

Calcium
Plasma calcium exists in three forms: that
which is bound to proteins, mainly albumin
(40%), that which forms complexes with ions
such as bicarbonate (10%), and that which is
'free' or ionised (50%); ultrafilterable calcium
comprises the latter two fractions. In all mam-
malian species studied so far the concentra-
tion of total and ultrafilterable or ionised cal-
cium in fetal plasma is higher than in maternal
plasma2 (table) and, therefore, because net
flux occurs against a concentration gradient,
active transport mechanisms are likely to be
involved. Support for this comes from animal
placental perfusion studies" which have
demonstrated maternofetal transfer of calcium
against a concentration gradient by a process
which is temperature dependent7 and is inhib-
ited by metabolic poisons such as dinitrophe-
nol and cyanide.6 Calcium is transported

Human maternal andfetal concentrations of calcium
magnesium, and phosphorus. Values are mean (SD) in
mmol/l

Mother Fetus

Calcium 2-13 (015) 2-65 (019)
lonised calcium 1 12 (0 06) 1-41 (0 09)
Magnesium 0-66 (0-16) 0-71 (0-16)
Phosphorus 1-43 (0 50) 1-92 (0 40)

Adapted from Schauberger and Pitkin.3

Action Research
Placental and
Perinatal Unit,
St Mary's Hospital,
Hathersage Road,
Manchester M13 OJH
S M Husain
M Z Mughal

Correspondence to:
Dr Mughal.

874

30r

 on M
ay 28, 2023 by guest. P

rotected by copyright.
http://adc.bm

j.com
/

A
rch D

is C
hild: first published as 10.1136/adc.67.7_S

pec_N
o.874 on 1 July 1992. D

ow
nloaded from

 

http://adc.bmj.com/


Mineral transport across the placenta

across the placenta faster than substances
such as mannitol which are likely to cross by
passive diffusion alone through the transtro-
phoblastic channels illustrated in fig 1.6 This
lends further support to the notion of active
transceilular calcium transport.
Calcium transport across the placenta is

bidirectional with marked species variation in
the relative magnitudes of unidirectional
maternofetal (J,,) and unidirectional fetoma-
ternal (Jf,) fluxes which are the determinants
of net maternofetal flux (J,t). Thus in the
sheep, placental calcium transport is reported
to be highly asymmetric with a Jmf of 212
mg/day/kg fetal weight and a Jf of 12
mg/day/kg.8 By contrast, in the rhesus mon-
key, Jmf and Jfin are said to be similar (390
mg/day/kg fetal weight and 325 mg/day/kg
respectively).8

MECHANISMS OF CALCIUM TRANSPORT
Transcellular placental calcium transport
must involve at least three steps (fig 1):

(1) Influx of calcium ions from maternal
plasma across the microvillous (mater-
nal facing) trophoblastic membrane into
the trophoblastic cytosol;

(2) Movement of calcium through the
cytosol without causing large fluctua-
tions in the cytosolic ionised calcium
concentration;

(3) Efflux of calcium ions from cytosol
across the basolateral (fetal facing) tro-
phoblastic membrane and hence across
the fetal capillary and endothelium into
fetal plasma.

In other transporting epithelia the intracel-
lular ionised calcium concentration is main-
tained at a low resting value of 10-7M in com-
parison to the extracellular concentration of
10-3M.9 Recently it has been shown that tro-
phoblast cytosolic ionised calcium concentra-
tion is 4 2x10-8 M.10 It is thought that cal-
cium enters the trophoblast as a charged ion'1
using a specific carrier in the microvillous
membrane,12 13 probably under the influence
of the combined electrical and chemical
ionised calcium concentration gradient across
the microvillous membrane.
An efficient mechanism for cytosolic com-

partmentalisation and/or buffering of calcium
ions in transit is likely to exist in all calcium
transporting epithelia if cell viability is to be
preserved. Likely candidates for this process
are cytosolic organelles such as mitochondria,
Golgi and endoplasmic reticulum,"I 14 15 and
calcium binding proteins (CaBP). The latter
have been identified in animal'6 17 and
human'8 placentas. In the rat, the rapid
increase in placental concentration of CaBP
and its mRNA during the period of increased
rate of fetal growth and calcium accumulation
in late gestation suggests that this protein may
be involved in placental calcium transport.'6 19
CaBP may enhance the diffusion of calcium

through an aqueous compartment,20 and it
has been calculated that the presence of CaBP
in enterocytes enhances cytosolic calcium dif-
fusion by some 60 to 70-fold.2' Thus, CaBP
may act as an intracellular shuttle to facilitate

the transport of calcium through trophoblastic
cytosol.

It is not known how the efflux of calcium
ions out of the cytosol across the basolateral
membrane of the placenta occurs. One possi-
bility is that it is translocated by a calcium and
magnesium dependent adenosine triphos-
phatase pump (Ca-ATPase) as this has been
identified in animal22 23 and human23 24
placental homogenates. Immunohistochemi-
cal and fractionation techniques have localised
its presence to the basolateral (fetal facing)
membrane of the human placenta.23 25 Among
its activators are calmodulin25 and, in other
tissues, acidic phospholipids, long chain
polyunsaturated fatty acids, and phospho-
tidylinositol.26

CONTROL OF PLACENTAL CALCIUM TRANSPORT
Factors which might effect the net maternofe-
tal transfer of calcium include maternal and
fetal placental blood flows, maternal and fetal
calcium concentrations, together with the
activity of placental transport mechanisms and
factors which regulate them. As already men-
tioned, fetal accumulation of calcium occurs
mainly in the last third of pregnancy and, in
keeping with this, maternofetal transport of
calcium in the rat increases some 70-fold over
the last six days of gestation.27 This is more
than can be accounted for by an increase in
functioning placental surface area or in blood
flow. To account for the total fetal content of
calcium in a normal full term infant, it has
been calculated that 170 litres of maternal
plasma would have to be cleared of its plasma
calcium content.28 With an estimated uterine
blood flow of 500 mi/min at term,29 the rate of
calcium delivery to the placenta by the blood
stream is unlikely to be directly rate-limiting
in its maternofetal transfer. However, we have
found that chronic reduction of uterine blood
flow in the rat does result in decreased mater-
nofetal transfer of calcium,30 perhaps through
an indirect link such as placental ischaemia
resulting in a depletion of the energy supply
necessary for active placental calcium trans-
port.

Indirect evidence suggests that the maternal
plasma calcium concentration may also influ-
ence placental calcium transport. Maternal
dietary deficiency leading to a maternal cal-
cium concentration as low as 1-0 mmoll
resulted in the birth of infants with rickets
whose plasma calcium concentrations were
around 1 -6 mmol/l.31 Poorly treated maternal
hypoparathyroidism resulting in maternal
hypocalcaemia can lead to transient congeni-
tal hyperparathyroidism32: it is postulated that
under these conditions decreased net placen-
tal calcium transfer leads to fetal hypocal-
caemia and it is this which in turn leads to
fetal hyperparathyroidism. Conversely, tran-
sient neonatal hypoparathyroidism has been
reported in infants born to hypercalcaemic
mothers due to untreated hyperpara-
thyroidism.33 Thus, in humans, placental
calcium transport may be dependent on
maternal plasma calcium concentration. In
animal studies divergent results have been
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obtained, suggesting marked species variation.
For example, in the rat, chronic matemal
hypocalcaemia induced by matemal vitamin
D deficiency and thyroparathyroidectomy did
not alter the matemofetal calcium flux com-
pared with sham operated animals.34
The placenta has no nerve supply and

therefore the changing transport rate during
gestation must be either an inbuilt effect of
placental growth and differentiation or must
result from changes in hormones (or other
controlling factors) produced by the mother,
fetus, or placenta itself. Calcium regulatory
hormones include 1,25-dihydroxyvitamin D3
(1,25(OH)2D3), parathyroid hormone (PTH),
calcitonin, and other peptides secreted by
the parathyroid glands, for example, para-
thyroid hormone related protein (PTHrP).
There are reports of matemal vitamin D

deficiency leading to neonatal rickets,35 sug-
gesting that matemal vitamin D might be nec-
essary for placental calcium transfer. The pres-
ence of cytosolic receptors for 1,25(OH)2D3 in
human and rat placenta36 and of CaBP (which
is a molecular marker of the action of
1,25(OH)2D3 in tissues such as intestine) in
human'8 and rat'6 placenta appears to support
the idea. Potential fetal sources of
1,25(OH)2D3, which may be important if con-
trol is from the fetal side, include that trans-
ferred from matemal plasma,37 that synthe-
sised from the fetal kidneys,38 and that
synthesised by the placenta itself.39

Direct study of the role of vitamin D on
placental calcium transfer has demonstrated
some species differences. In sheep, matemal
treatment with la-hydroxycholecalciferol40 or
prolactin4' stimulated matemofetal transfer of
calcium - the latter hormone could have
exerted its effect on the placenta by increasing
matemal 1,25(OH)2D3 concentration. Fetal
nephrectomy led to a marked decrease in fetal
plasma 1,25(OH)2D3 concentration with
reversal of the usual matemofetal calcium
gradient which was restored by infusion of
1,25(OH)2D3 into the fetal circulation.42
By contrast, in rats, matemal vitamin D

deficiency did not affect total fetal calcium
content,43 and there was no effect on the
matemofetal calcium gradient after fetal
nephrectomy.44 However, on the fetal side of
the placenta, 1,25(OH)2D3 (whether injected
subcutaneously into the fetus or perfused into
the fetal side of the placental circulation) also
had an effect in this species in that it stimu-
lated matemofetal calcium flux across placen-
tas of rat fetuses which had been previously
parathyroidectomised by decapitation but not
across placentas of intact fetuses.45 Because
PTH is an important trophic stimulator of
1,25(OH)2D3 synthesis, it is likely that the
parathyroidectomised fetuses had a lower
plasma 1,25(OH)2D3 concentration compared
with intact fetuses. This suggests that this
hormone only stimulates placental calcium
transfer when its plasma concentration is low
to start with.45As might be expected from the
above, PTH (when injected subcutaneously
into the fetus but not when perfused on
the fetal side of the placental circulation)

stimulated placental calcium transfer across
placentas of parathyroidectomised fetuses but
not across placentas of intact fetuses.45

In 1985 it was reported that the concentra-
tion of PTH bioactivity was higher in fetal
than maternal plasma whereas the converse
was true of the immunoreactivity of PTH.46
This led to the suggestion that the fetal
parathyroids may secrete a second peptide
which acts functionally, but not chemically,
like PTH. It was later reported that addition
of fetal parathyroid gland extract to autolo-
gous fetal blood used to perfuse placentas of
thyroparathyroidectomised sheep fetuses in
situ led to an increase in the rate of calcium
accumulation in the fetal blood reservoir.47
Using a similar experimental model it has
been shown that addition of PTHrP (isolated
from a human cancer cell line) but not bovine
PTH (1-84) or rat PTH (1-34) resulted in an
increase in the rate of calcium accumulation
in the fetal blood reservoir.48 These authors
suggested that the second peptide produced
by fetal parathyroid glands may be similar to
the hypercalcaemic PTH-rP implicated in
the humoral hypercalcaemia of some solid
tumours.49 However, because of technical dif-
ficulties precise quantitative data are difficult
to obtain, and the conclusion that this oncofe-
tal protein may have a part to play in the
regulation of calcium transport by the
placenta remains to be confirmed in other
preparations and species. In the rat, two
human PTHrP fragnents (1-34 and 75-86),
when perfused into the fetal circulation of the
placenta, could not be demonstrated to have
an effect on the maternofetal transfer of
calcium.50

Calcitonin may also have a part to play in
that, in chronic maternal calcitonin deficiency
in sheep, induced by thyroidectomy with thy-
roxine replacement, a significant increase in
total fetal calcium content was found, whereas
calcitonin replacement led to normalisation of
the fetal calcium content.5

Phosphate
During the latter part of gestation, net mater-
nofetal transfer of phosphate is against a con-
centration gradient (table). Active transport
processes are therefore again likely to be
involved. In kinetic studies of uptake of phos-
phate from the maternal or fetal circulations
of perfused guinea pig placenta, uptake from
the maternal circulation exceeded that from
the fetal, inplying a net maternofetal flux.
Uptake was sodium dependent and was
reduced by anoxic conditions or metabolic
poisons.52 5 In vitro studies of transport
across human placental microvillous mem-
brane has, interestingly, shown that phosphate
transport is reduced by PTH54 and is modu-
lated by pH, temperature, and sodium and
amino acid concentration.55 56 Apart from
this, little is known about the factors which
regulate placental phosphate transport and
indeed whether phosphate is the molecular
form in which phosphorus is transported to
the fetus.
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Mineral transport across the placenta 877

Magnesium
The fetal plasma concentration of total and
ultrafilterable magnesium again exceeds that
of maternal plasma57 (table), and a magne-
sium pump must therefore be postulated. In
support of this, in the rat unidirectional
maternofetal transfer of magnesium is consid-
erably higher than that of a passive diffusional
marker, is reduced by the addition of cyanide,
is temperature dependent,58 and depends
on the activity of a sodium/magnesium ion
exchanger.59 Interestingly, amiloride, an in-
hibitor of other sodium exchangers, has been
demonstrated to reduce fetal accumulation
of magnesium when injected into pregnant
rats.60
There is no direct information on the regu-

lation of placental magnesium transport, but
an insight can be gained by observing the
effects of therapeutic and experimental
manipulations of maternal magnesium con-
centration on fetal magnesium concentration
and content. In humans, treatment of pre-
eclampsia with intravenous magnesium
sulphate led to maternal and fetal hypermag-
nesaemia,61 suggesting that either the 'mag-
nesium pump' is not normally saturated
and/or increased diffusion across the placenta.
Again, there are differences between species:
acute maternal hypermagnesaemia in the rat
led to only a slight increase in fetal plasma
magnesium concentration.62 Chronic magne-
sium deficiency in the rat, however, resulted
in decreased fetal plasma magnesium concen-
tration and in total fetal magnesium content.5

Conclusion
Placental transport of minerals and its regula-
tion is a highly complex and largely ill under-
stood phenomenon. Much of our knowledge
remains fragmentary and there is a great deal
that cannot be explained. For example, in
relation to the three minerals discussed here,
what are the precise placental mechanisms of
transfer and are they controlled by maternal,
fetal, or intrinsic placental factors or a combi-
nation of all three?; how do these factors
interact with respect to maternal supply and
fetal need?; and what 'switches on' the
increased rate of transfer of these minerals in
late gestation? These are just a few of the
questions which need to be addressed before
we achieve a fuller understanding of mineral
transport across the placenta.
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