LETTERS TO THE EDITOR

Providing medical care for children

Str,—David Hull has produced a masterly overview of the problems facing the medical services for children in this country.1 Throughout his article he clearly promotes the principles of partnership with parents and cooperation between professionals involved in the care of children which underpin the Children Act 1989. We are therefore concerned that his comments concerning the concept of 'children in need' as found in the Children Act might lead to some misunderstanding among paediatricians. The act states 'a child shall be taken to be in need if: (a) he is unlikely to achieve or maintain . . . a reasonable standard of health or development without the provision for him of services by a local authority, (b) his health or development is likely to be significantly impaired . . . without such services OR (not and) (c) he is disabled'.

Thus all disabled children are by definition children in need within the terms of the act, whatever the ability of their parents and entitled to the services provided under part III and schedule 2. All will be eligible for inclusion on the register of disabled children that the local authority will be obliged to set up.

Assessment of all children in need will turn on the child's health, development or disability, and need for services and not on a professional judgment of their parents' abilities, although in many cases they may be a factor. One of the many challenges of the Children Act will be to avoid stigmatisation of families with a child in need who use local authority services. Paediatricians and other child care professionals, if they are effectively to help local authorities identify children in need and encourage the use of services, must have a clear understanding of the concepts within the Children Act. This understanding will also empower professionals in partnership with parents to campaign for the resources local authorities will need if they are to fulfil successfully their obligations under the act to children in need.

MARGARET A LYNCH
Newcomen Centre, Guy's Hospital London SE1 9RT

RICHARD WHITE
Solicitor, 42 High Street, Croxton CR0 1YB


Life threatening 'epilepsy'

Str,—In an earlier issue of the journal, Drs Brown and Godman reported a 5 year old girl with spells of unconsciousness which later proved to be caused by ventricular tachycardia and fibrillation.1 Confusion in diagnosis occurred at first, leading to the presumption of epilepsy as the cause of the 'spells'. This misdiagnosis was based on several medical history items: (i) possible focal distress preceding the child's birth, (ii) questionable slowed motor development and hypotonia, and (iii) a family history of a cousin with spells caused by ketotic hypoglycaemia. These historical factors suggested that the patient's spells were likely epileptiform. Later complete cardio- logical evaluation proved that the loss of consciousness was not epileptiform, but rather cardiogenic in origin.

I would like to illustrate further the diagnostic difficulty which can be encountered with long Q-T syndrome in paediatric patients. I cared for an adolescent girl with spells. When she came to see me she had been tentatively diagnosed as having epilepsy and was already receiving phenytoin for that diagnosis. Her spells disappeared during phenytoin treatment. For a variety of reasons I chose to wean and then discontinue the phenytoin. After this had been completed the girl began having more spells of loss of consciousness. At that point I obtained an electrocardiogram (ECG) which demonstrated a long Q-T interval. Holter monitoring confirmed ventricular ectopy, consistent with the diagnosis of long Q-T syndrome.

Presumably phenytoin, a class 1b antiarrhythmic agent, was therapeutic for the patient's problems, despite the fact that the diagnosis under consideration was in error.

The vast number of spells in the paediatric age group are probably benign and due to either breath holding in infancy or situational causes of syncope or epilepsy. Despite this, the relatively rare child with a cardiac conduction defect accounting for her spells certainly exists and her spells are certainly life threatening. Their diagnosis often depends on the consultant first seeing them. If the child described above had first seen a paediatric cardiologist, I am quite sure her long Q-T syndrome would have been promptly diagnosed. On the other hand, as a paediatric neurologist first seeing her, I reasonably first considered a diagnosis of seizures disorder.

I do not agree with Garson who in effect states that all new presumed epilepsy patients should have an ECG because of the risk of the spell being of cardiac origin.2 In fact, I do not think that every new presumed epilepsy patient needs an ECG. Patients presenting with spells are best benefited by the physician thoughtfully considering the broad diagnostic differential of the common paediatric complaint of spells, whether they be due to neurological, cardiological, psychiatric, or metabolic causes.

Neither the patient of Brown and Godman patient nor my patient was harmed by delayed diagnosis. I wish only to add yet one more confusing factor which may possibly be encountered in the care of children with spells.

ROBERT C WOODY
PO Box 507,
Tohomas Hopkins University,
School of Hygiene and Public Health,
605 N Wolfe Street,
Baltimore, MD 21205,
USA


Accidents on hospital wards

Str,—Leoneve and Bonfield have emphasised the problems of accidents occurring to children on hospital wards and have also demonstrated how information, which previously had been collected solely for medicolegal purposes, could be used for preventive work.1 A similar case could be made for studying accidents to children in health centres and baby clinics.

By inspecting incident log books maintained by our community unit, it was discovered that for the period 1989–90 inclusive, 17 preschool children in this district were reported as having had accidents while on community health premises. The commonest reported incident was head injury sustained as a result of a fall; four infants fell from changing mats during weighing sessions and 10 children fell while playing in waiting rooms. Two children had hand injuries due to trapped fingers in swinging doors and one child ingested the boric acid crystals contained in a urine container.

Although none of these incidents resulted in serious injury, the potential for more serious outcome was present. In particular, the importance of injuries to the head as a major cause of childhood mortality and morbidity should be remembered.2 In retrospect many of the accidents could have been avoided by greater supervision and some modification of clinical premises. In some respects, health centres may be more hazardous to children than hospital wards as they are busy places and supervision of young children is not easy especially in overcrowded waiting rooms. Nevertheless, after our investigation we have endeavoured to increase awareness of child safety among clinic staff and have urged particular caution with regard to the supervision of babies while they are on changing mats.

Child accident prevention should be a key issue for every health authority. By ensuring that children are as safe as is reasonably possible while on health authority premises, we are setting a good example for parents and are ensuring that opportunities for health promotion are not missed.

In addition, it should be remembered that children also have accidents on premises maintained by social services, local education authorities, and borough councils. Perhaps collation of accident data kept by these authorities with appropriate intervention should also form part of every district's child accident prevention strategy.

M J BANNON
Child Accident Prevention Group,
North Staffordshire Health Authority,
79 London Road,
Stoke-on-Trent ST4 7PZ


Hazard from the exposed terminals of a battery driven transport incubator

Str,—In common with most regional intensive care units we offer a retrieval service, collecting


Exposed terminals and damage to battery.

Treatning neonatal jaundice with pheno- barbitone: the inadvertent administration of significant doses of ethyl alcohol

Str.—One indication for the administration of phenoobarbitone is neonatal jaundice: the drug acts on the immature liver to induce micro- somal enzymes and may also have a direct protective effect on the central nervous system. Phenoobarbitone can be given orally as an elixir. The hospital pharmacy will prepare this, on request, as an aqueous solution. In this form, the elixir keeps poorly and cannot be stored on the ward. Stock phenoobarbitone elixir on the ward, however, is made with ethyl alcohol to prolong its shelf life. Elixirs in this form are purchased directly from the drug companies and are 40% ethyl alcohol by volume.1

Regular dosing with the alcoholic elixir can result in neonatal alcohol toxicity. It should not be taken for granted that the elixir will be aqueous. We would therefore advise that the solvent is also specified on the drug chart when prescribing oral phenoobarbitone elixir for neonatal jaundice.

Parenteral lipids and free radicals in preterm infants

Str.—Professor Cooke describes an interesting association between the use of parenteral lipids and chronic lung disease in preterm infants.2 The study nicely confirms and extends the results of Hamermon and Arambar.3 The author mentions lipid peroxidation and generation of free radicals in the lipid solution as one possible mechanism by which parenteral lipid solutions may injure preterm infants.4 We should like to draw your readers’ attention to the following: free radical induced lipid peroxidation in parenteral lipid solution has actually been described both in vitro and in vivo upon injection in preterm infants.5 Although the article referred to by the author does not concern lipid peroxidation and free radicals,6 we agree with Professor Cooke’s conclusion that the advantages of parenteral lipid infusion should be carefully weighed against its potential for harm. The possibility of such adverse effects should not be ignored, particularly when parenteral nutrition in small premature infants. Work with these patients indicates a close association between free radical induced lipid peroxidation and chronic lung disease.6

PARENTERAL LIPIDS AND FREE RADICALS IN PRETERM INFANTS

STURE ANDERSSON
OLLI PITKÄNEN
Children’s Hospital,
00290 Helsinki, Finland

MIKKO HALLMAN
University of California,
Irvine, CA 92668, USA


Antenatal diagnosis of inborn errors of metabolism

Str.—The authors of this paper state that they are unaware that prenatal diagnosis has been attempted for hyperinsulinemia. The diagnosis of a previously affected child such an attempt has been made in a subsequent pregnancy.7 The presence of an unaffected fetus was demonstrated by normal amniotic fluid amino acid analysis and normal oxidation of lysine by cultured amniotic fluid cells. Thereafter, the parents refused further attempts at antenatal diagnosis and three affected infants were born. The team of whom has been reported in this journal.8

Transplant gluten intolerance

Str.—Burgin-Wollf et al report that 11% of children (15/134) who were originally diagnosed as having coeliac disease, with a flat small intestinal mucosa and clinical response to a gluten free diet, had a normal small intestinal mucosa after four to 15 years of regular gluten challenge.9 Thus there has been no histological or clinical relapse after this interval making it possible that the original diagnosis in these children was transplant gluten intolerance rather than coeliac disease. None the less Polanco and Larrauri have reported five children with coeliac disease who took up to nine years to relapse after gluten challenge having been shown to have normal small intestinal mucosal biopsies in five years after a gluten challenge.10 Thus some of the children reported by Burgin-Wollf et al may ultimately relapse. Nevertheless it is of great importance that all 15 children who have not relapsed were aged less than 2 years at initial diagnosis. This finding provides firm data to support the revised European Society for Paediatric Gastroenterology and Nutrition (ESPGAN) criteria for coeliac disease.11 recommendation that children originally diagnosed as coeliac disease under the age of 2 years should always have the diagnosis established by means of small biopsies coupled with gluten elimination and challenge as originally recommended.11 No child over this age failed to relapse in the study of Burgin-Wollf et al.11
