Routine measurement of blood pressure in schoolchildren

Undergraduate and postgraduate medical students learn that the measurement of blood pressure is part of routine clinical examination. This would seem a reasonable assertion; however, as will be shown in this article, it requires a thorough understanding of the factors involved in the production of a valid measurement in order to interpret blood pressure meaningfully in children. Apart from research purposes, the endpoint of measuring blood pressure must be to identify some pathology. That pathology may be a disease causing secondary hypertension, in which case it is important that the clinician should know how to deal efficiently with abnormal findings, probably referring those with severe hypertension to tertiary centres. Otherwise it may be perhaps a more subtle tendency towards essential hypertension, in which case there should be provision for long term follow up, including the difficult period around adolescence, and later, when transfer to adult care is necessary. In both cases, it is important neither to miss a treatable condition nor create unnecessary anxiety to parents and child by failing to recognise normality. This article addresses some of the factors leading to valid assessment of blood pressure.

When to measure blood pressure
The most important hurdle to overcome in relation to blood pressure measurement in children concerns the decision actually to take the blood pressure. The recent working party of the British Hypertension Society did not recommend the routine screening of the paediatric population for blood pressure. Blood pressure in children is very variable, and so regression to the mean, which has long been a problem in trials of antihypertensive treatments in adults, is likely to cause even greater problems in children. Thus although the phenomenon of ‘tracking’ of blood pressure allows some prediction of later hypertension, the correlation coefficients between initial and final blood pressure measurements in a number of studies are relatively low and insufficiently consistent to allow predictions of future blood pressure levels from initial recordings, especially in young children.

The situation becomes more unclear when considering the child with a family history of hypertension. While it would seem prudent to follow up a child with a strongly positive family history, the power of observations made before adolescence is debatable. The position may be different during adolescence when there is probably greater overall predictive value, but traditionally this is a period when medical input is at a minimum.

At the other end of the range, there seems little doubt that blood pressure should be measured in all children presenting to clinicians when ill or when illness is suspected. This would be especially the case in paediatrics, and there is no reason why it should not be applied to children. The following groups of children should also have regular routine blood pressure measurements because of the known association between certain pathological states and hypertension: those with any form of renal or cardiovascular disease, urological abnormalities, meningo(myelo)ce, diabetes mellitus, and neurofibromatosis. Also those with headaches, visual
symptoms, facial palsy, acute neurological disease, hyper-
calcaemia, lead poisoning, and acute hypovolaemia. Drug
therapy with steroids, sympathomimetics, the contracep-
tive pill, and intravenous administration of blood products
or saline must be monitored by blood pressure recordings.3

Circumstances of measurement
The blood pressure should be taken in a situation which
produces least anxiety. The phenomenon of 'white coat'
hypertension in adulthood is clearly applicable to children.10
Some explanation of the procedure, appropriate to the
child's age, is certainly advisable as in younger children the
non-invasive nature of the experience is not always appreci-
ated, and the procedure can actually be perceived as quite
painful, even if performed properly. The room must be at
a reasonable ambient temperature,11 and the child should
have been sitting quietly for a few minutes (for example, the
recording should not be performed directly after the
assessment of power in all four limbs!).

The technique that is most practicable for widespread
clinical application is that using a conventional, well
maintained mercury sphygmomanometer. The frustration
caused to clinician and client alike of hunting around the
room to find a suitable cuff size, or rubbing tubing which does not leak, not only makes measurement an
embarrassment, but is unlikely to yield a useful result after
all the trouble involved. Therefore it is better to limit cuffs
to three or four familiar sizes than to provide a plethora of
unreliable equipment. A minimum of four cuff sizes are
necessary to cover the school age population: suitable
bladder cuff sizes are 4 x13 cm, 8 x18 cm, 12 x24 cm (adult
cuff), and 14x33 cm (large adult size).2 4 12 In any
individual the cuff should be the widest one that can be
applied to the upper arm without obstructing the antecubital
fossa, and with an inflation bladder covering at least two
thirds of the circumference of the arm. The use of Velcro
fastening cuffs is popular, but not all types of cuff guarantee
secure fastening.13 Ideally these recordings should be made
at one minute intervals with the forearm supported at chest
level. The averages of the second and third readings should
be utilised. Systolic pressure is easier to define than
diastolic,4 but it is important to pump up the cuff
sufficiently not to be mistaken by a silent phase which can
occur when the pulse pressure is high. The fourth Korotkoff
sound, corresponding to the point of muffling rather than
the disappearance of sounds as the cuff is deflated, is the
better estimate of diastolic pressure.15 16 This is of academic
interest, however, in most individual school aged subjects in
the clinical setting.

Measurement therefore requires training and experience,
and, as in many situations, a well trained nurse may be a
more consistent and accurate technician than a doctor. In
any assessment of an unexpected blood pressure result,
however, it is always worth ascertaining the circumstances
of the measurement and the identity of the examiner.
Further action should not be based on single results only,
and a few good measurements separated in time and space
are more reliable than multiple readings performed in close
occasion.17 Although outside the scope of this article in that
it is not yet routine, in the older child particularly, in whom
there is concern that blood pressure may be raised, the use
of ambulatory monitoring if available may become useful in
further assessment before making a decision.18 19

Interpretation
With the provisos noted above, the child with obvious
hypertension provides the clinician with a clear message.
Most children who cause worry, however, will have less
severely raised blood pressure necessitating reference to an
appropriate normal range of values. Blood pressure clearly
varies with age, although not dramatically so in the
school age group until puberty, and all the available charts
can make reference to age, either directly or indirectly.
The charts currently most used in the English speaking
world are those produced by the Second Task Force on
Blood Pressure Control in Children from Bethesda, in the
United States,3 which relate blood pressure directly to age.
Despite stressing the importance of multiple measurements
the charts are based, for reasons of study design, on first
readings only and this makes interpretation difficult.20
These data make some allowance for the size of the
individual, which is important as most children with raised
blood pressure with respect to age will be obese21 and
further management will be altered accordingly. It may be
more appropriate altogether, in view of the known influences
of body size on blood pressure, to relate blood pressure to
height directly16 and charts exist for this. Which ever
charts are used, it is probably valuable to have 'normograms'
available for each sex.

In conclusion, the chances of achieving valid and efficient
blood pressure measurements are improved if the sources of
error are actively taken into account. In particular, there
should be adequate facilities available appropriate to the
situation and, perhaps most importantly, the attitude of
the clinician must be one in which there is a high expectation
that the results achieved reflect a true picture, so that
further action can be taken with confidence.

P N HOUTMAN
M J DILLON

Hospital for Sick Children,
Great Ormond Street,
London WC1N 3JH

1 de Swiet M, Dillon MJ. Hypertension in children. Mass screening not
2 de Swiet M, Dillon MJ, Littler W, O'Brien E, Pasfield PL, Petrie JC.
Measurement of blood pressure in children. Recommendations of a working
3 de Swiet M, Fayers P, Shinebourne EA. Value of repeated blood pressure
4 The Australian therapeutic trial in mild hypertension. Report by the
5 Laerum RM, Mahoney LT, Clarke WR. Tracking of blood pressure during
6 Zinner SH, Margolius HS, Rosen P, et al. Accuracy of blood pressure
measurement and urinary kallikrein concentration in childhood: an eight-year follow-up.
7 Michels V, Bergstrahl NS, Hovenner VR, et al. Tracking and prediction of
8 Monger RG, Prinzen RJ, Gomes-Marin O. Persistent elevation of blood
pressure among children with a family history of hypertension: the
Amsterdam: Elsevier (in press).
10 Pickering TG, James GD. Some implications of the differences between
home, clinic and ambulatory blood pressure in normotensive and hyperten-
11 Vandongen R, Jenner DA, English DR. Determinants of blood pressure
12 Leumann EP, Spiess B. Requirements for paediatric blood pressure cuffs.
14 Savage JM, Dillon MJ, Taylor JFN. Clinical evaluation and comparison of
the Infrascope, Amteronide and mercurial sphygmomanometer in measure-
1977;59:797-820.
16 Voors AW, Webber LS, Berensen GS. Epidemiology of essential hyperten-
17 Strong WB. Serial blood pressure measurements in children. Mayo Clin
18 Eick M, Leumann EP. Ambulatory blood pressure recording in children
and adolescents with a semi-automatic recording device. Helo Paediatric Acta
monitoring for the evaluation of borderline hypertension. Pediaric
Nephrology 1990;4:323.
determinants of basal blood pressure in children—the Bogalusa heart study.
22 Andre JL, Deschamps JP, Guesquin R. La tension arterielle chez l'enfant et
l'adolescent. Valeurs representees a l'age et a la taille chez 17067