also illustrated some of the difficulties in attempting comparisons of different amino acid solutions.

We have previously drawn attention to abnormal plasma amino acid profiles in Vamin 9 fed infants. We considered this to be a reflection of the amino acid composition of Vamin 9 and not a diurnally related situation as the pattern recurred consistently, and was much less evident when a modified solution containing less phenylalanine was used. One factor which McIntosh and Mitchell do not address in detail, but which may have considerable influence on plasma amino acid profiles, is the amount of enteral nutrition being given. In our original index case of hyperphenylalaninaemia, small volumes of breast milk given as a supplement to parenteral nutrition produced large changes in plasma phenylalanine. The patients of McIntosh and Mitchell all received either breast milk or preterm formula in addition to their intravenous nutrition. In fact, by day 5 of the study, the only day during parenteral nutrition on which plasma amino acid profiles were measured, the figures given for mean enteral feed in both infants receiving Vamin 9 and those fed with MB233 represent approximately 60% of the total nitrogen intake. It is therefore difficult to see how valid conclusions can be drawn about the suitability of either amino acid solution as a parenteral nitrogen source.

Although 68 patients were recruited to the study, some died, some were excluded, and some had inadequate blood sampling or blood taken on the wrong day. As a result, the data derive solely from a single plasma amino acid analysis, performed on only seven patients in the Vamin 9 group and five in the MB233 group. Moreover, individual amino acid concentrations are reported as mean (SD) suggesting normal distribution of data. However, the fact that ~2SD would give a negative value for 50% of the amino acids measured indicates non-parametric distribution of results, consistent with similar studies. It would therefore be interesting to be able to compare mean (after log transformation to 'normalise' the data) and ranges of individual amino acids. Finally, single measurements of plasma amino acid profiles may not allow adequate comparison of different solutions as plasma concentrations can vary considerably. This is illustrated by the following plasma concentrations of phenylalanine and tyrosine measured every two weeks in a child with gastronitis receiving total parenteral nutrition with a constant nitrogen intake: phenylalanine 149, 500, 200, 46, 93, and 260 mmol/l and tyrosine 95, 60, 80, 58, 86, 86, and 145 mmol/l. The theoretical basis for the formulation of MB233 is of interest, but it remains to be seen whether or not this new solution offers any advantages over alternative preparations.

Professor McIntosh comments:

Drs Puntis and Booth suggest that the enteral component of nutrition may be important in the development of hyperphenylalaninaemia. They point out that on day 5 both groups of infants in our study received approximately 60% of their nitrogen intake enterally. We agree with Drs Puntis and Mitchell that any intravenous nitrogen intake was about 40% of the total! The point of difference in our two groups was the composition of the intravenous amino acid mixture and McIntosh and Mitchell would surely 'to suggest the high concentrations of phenylalanine, tyrosine, serine, proline, and asparagine were due to the enteral intake.

There were in fact 16 and 14 patients with 'good' samples for amino acid analysis taken on day 5—see original table 5. We accept that the results were not in a Gaussian distribution—this is why Wilcoxon's signed rank test was used when comparing amino acid concentrations of the two groups.

We note the information in the last paragraph which we find very interesting.

We believe that the apparent ability of babies given MB233 to keep their plasma aminogram in the reference range of cord blood aminograms makes it an attractive alternative to Vamin 9 given these children. Amino acids at five days showed the values of infants with untreated phenylketonuria and hereditary tyrosinemia.

Virological investigations of acute encephalopathy in India

Str,—Rabies should be considered in the differential diagnosis of acute encephalopathy in children living in endemic areas. It may present as a non-specific encephalitis without the pathognomonic features such as hydrophobia and a clear history of exposure is not always present. It was therefore surprising that it received no mention in the series of Kumar et al1—could it have accounted for some of the cases among the 40% in whom they found no cause?

SUSAN M HALL
PHLS Communicable Disease Surveillance Centre, 61 Colindale Avenue, London NW9 6EQ


Auditing community screening for underdescended testes

Str,—With interest we read the article of Tamhne et al about the screening for underdescended testes. We were surprised by reported high cumulative rates of orchidopexy especially as the authors state that some of the boys in the youngest cohort would not have their underdescended testes detected and operated on.

In The Netherlands during the period from 1976 to 1986 about 3% of boys were operated on the ages of 0 and 14 underwent orchidopexy. This percentage is higher than the generally accepted estimate of the prevalence of truly non-descended testes (about 1%) we an important effort to reduce unnecessary orchidopexy.

As we have reason to believe that in the past the high orchidopexy frequency was related to inaccuracy of the testes localisation, in some parts of The Netherlands a card for the testes registration was introduced. On this card the localisation of the testes is registered by the person who assists the delivery. If the testes are not scrotal at birth the boys are followed up. After introduction of this card in one region the number of operations for orchidopexy was reduced to an acceptable level.

We can only hope that this registration will be soon after birth because the cremaster reflex is still absent at the late age.