also illustrated some of the difficulties in attempting comparisons of different amino acid solutions.

We have previously drawn attention to abnormal plasma amino acid profiles in Vamin 9 fed infants. We considered this to be a reflection of the amino acid composition of Vamin 9. The feed used in our study was non-syncretic as the pattern recurred consistently, and was much less evident when a modified solution containing less phenylalanine was used. One factor which Mcintosh and Mitchell do not address in detail, but which may have considerable influence on plasma amino acid profiles, is the amount of enteral nutrition being given. In our original index case of hyperphenylalaninaemia, small volumes of breast milk given as a supplement to parenteral nutrition produced large changes in plasma phenylalanine. The patients of Mcintosh and Mitchell received either breast milk or preterm formula in addition to their intravenous nutrition. In fact, by day 5 of the study, the only day during parenteral nutrition on which plasma amino acid profiles were measured, the figures given for mean enteral feed in both infants receiving Vamin 9 and those fed with MB233 represent approximately 60% of the total nitrogen intake. It is therefore difficult to see how valid conclusions can be drawn about the suitability of either amino acid solution as a parenteral nitrogen source.

Although 68 patients were recruited to the study, some died, some were excluded, and some had inadequate blood sampling or blood taken on the wrong day. As a result, the data derive solely from a single plasma amino acid analysis, performed on only seven patients in the Vamin 9 group and five in the MB233 group. Moreover, individual amino acid concentrations are reported as mean (SD) suggesting normal distribution of data. However, the fact that 2-SD would give a negative value for 50% of the amino acids measured indicates non-parametric distribution of results, consistent with similar studies. It would therefore be interesting to be able to compare mean (after log transformation to ‘normalise’ the data) and ranges of individual amino acids.

Finally, single measurements of plasma amino acid profiles may not allow adequate comparison of different solutions as plasma concentrations can vary considerably. This is illustrated by the following plasma concentrations of phenylalanine and tyrosine measured every two weeks in a child with gastrochisis receiving total parenteral nutrition with a constant nitrogen intake: phenylalanine 149, 500, 200, 49, 63, 983, and 260 μmol/l and tyrosine 95, 60, 80, 58, 86, 86, and 145 μmol/l. The theoretical basis for the formulation of MB233 is of interest, but it remains to be seen whether or not this new solution offers any advantages over alternative preparations.

Professor Mcintosh comments:

Drs Puntis and Booth suggest that the enteral component of nutrition may be important in the development of hyperphenylalaninaemia. They point out that on day 5 both groups of infants in our study received approximately 60% of their nitrogen intake enteraly. We agree with the authors that the intravenous nitrogen intake was about 40% of the total! The point of difference in our two groups was the composition of the intravenous amino acid solution Mcintosh and Mitchell would suggest to be a 'non-ssequitur' to suggest the high concentrations of phenylalanine, tyrosine, serine, proline, and asparagine were due to the enteral intake.

There were in fact 16 and 14 patients with 'good' samples for amino acid analysis taken on day 5—see original table 5. We accept that the results were not in a Gaussian distribution—this is why Wilcoxon's signed rank test was used when comparing amino acid concentrations the two groups.

We note the information in the last paragraph which we find very interesting. We believe that the apparent ability of babies given MB233 to keep their plasma aminogram in the reference range of cord blood aminograms makes it an attractive alternative to Vamin 9 glucose where the aminogram was at five days approached the values of infants with untreated phenylketouria and hereditary tyrosinemia.

Virological investigations of acute encephalopathy in India

Str.—Rabies should be considered in the differential diagnosis of acute encephalopathy in children living in endemic areas. It may present as a non-specific encephalitis without the pathognomonic features such as hydrophobia and a clear history of exposure is not always present. It was therefore surprising that it received no mention in the series of Kumar et al.1—could it have accounted for some of the cases among the 40% in whom they found no cause?

Dr Kumar comments:

Rabies is endemic in the Indian subcontinent. It produces an acute encephalitic illness usually with a pronounced psychological component.

We agree that occasionally none of these pathognomonic features may be found and therefore it may account for a few of the fatal 'unexplained encephalopathies' in this study. Although we have discussed other viral encephalitides as a cause in this group we have not specifically mentioned rabies. We therefore appreciate Dr Hall's comment.

Cysticercosis in India is not uncommon2 and parenchymal involvement, the most common form in children,3 may present acutely. Acute diffuse parenchymatous disease presents with generalised cerebral oedema often severe enough to cause an acute rise in intracranial pressure with deterioration of consciousness and cerebral shifts. Acute focal parenchymal disease presents with localised patchy oedema often resulting in convulsions.

The diagnosis of cerebral cysticercosis may present difficulties. Sensitivity in the problem of poor sensitivity and specificity and cerebrospinal fluid changes are often non-specific and non-diagnostic. Computed tomography has improved diagnostic accuracy but it is not always readily available in India. Where there has been the opportunity to perform enhanced computed tomography on Indian patients presenting with seizures, lesions suggestive of cysticercosis have been reported in 26% of cases,4 excision biopsy confirming the diagnosis in a further series of cases.5 A diagnosis of cerebral cysticercosis should be considered in all children presenting with 'acute encephalopathy' in India.

Auditing community screening for undescended testes

Str.—With interest we read the article of Tamhne et al. about the screening for undescended testes. We were surprised by reported high cumulative rates of orchidopexy especially as the authors state that some of the children in the younger cohort would not have their undescended testes detected and operated on.1

In The Netherlands during the period from 1976 to 1986 about 3% of boys before the ages of 0 and 14 underwent orchidopexy.1,3 Because this percentage is higher than the generally accepted estimate of the prevalence of truly non-descended testes (about 1%) we are of the opinion that efforts to reduce unnecessary orchidopexy. As we have reason to believe that in the past the high orchidopexy frequency was related to inaccurate registration of the testes localisation, in some parts of The Netherlands a card for the testes registration was introduced. On this card the localisation of the testes is registered by the person who assists the delivery. If the testes are not scrotal at birth the boys are followed up. After introduction of this card in one region the number of operations for orchidopexy was reduced to an acceptable level.3 We consider this registration system to be efficient because the cremaster reflex is still absent at

4 Wadia RS, Makhale CN, Kelker AV, Grant KB. Pilocytic astrocytoma in India with special reference to lesions showing ring or disc-like enhancement. J Neurol Neurosurg Psychiatry 1978;50:1298–301.

Arch Dis Child: first published as 10.1136/adc.66.4.560 on 1 April 1991. Downloaded from http://adc.bmj.com/ on October 21, 2023 by guest. Protected by copyright.