Dr Isac's comments:

I agree with Professor Dodge and Dr Sagar that milk lipids may provide important protective effects. Furthermore, I find no evidence that alterations in the medium chain fatty acid composition of mouse milk may reduce the severity of infection from rotavirus, a non-enveloped virus, extremely interesting. We, of course, did not determine the effect of the stomach contents of infants fed the various formulas on non-enveloped viruses. Rather, our statement that milk fatty acids and monoglycerides have antiviral activity against enveloped viruses but not non-enveloped viruses was based upon the results of a number of studies by us and others showing that only enveloped viruses are inactivated by human pancreatic lipase.

In the early studies of Welsh et al (1979) and others(1) enveloped Semliki Forest virus and herpes simplex virus type 1 (HSV-I) were inactivated by milk lipids but enterovirus coxsackie B4, a non-enveloped virus, was not. In addition, we found that human milk inactivated the enveloped measles virus, vesicular stomatitis virus and HSV-I but not the non-enveloped vaccinia virus and poliovirus. Milk lipids also have been shown to inactivate dengue virus(2) and mouse mammary tumour virus(3); these are both enveloped viruses.

In vitro studies have been found that purified free fatty acids and their derivatives inactivated the enveloped Sendai virus, Newcastle disease virus, influenza A virus, Sindbis virus, West Nile virus, HSV-1 and a number of non-enveloped bacteriophages but not the non-enveloped SV40, polio orencephalomyelitisviruses (ECMV). This antiviral effect appeared to be due to the destruction of viral envelopes.

Multiple studies suggest that the apparent protective effect of milk lipids against rotavirus infection observed by Dodge and Sagar may be due to the direct inactivation of the non-enveloped rotavirus. However, milk fatty acids may prevent the binding of rotavirus and other non-enveloped viruses to receptors or interfere with viral uncoating. These suggestions are supported by the observations of JFE Newman (Institute for Virology, Sandringham, South Africa), reported at the recent VIIIth International Congress of Virology (Berlin, 1989), that fatty acids with chain lengths of 12-15 prevent uncoating of some non-enveloped viruses, for example, bovine enterovirus and ECMV, but not others, for example, poliovirus type 1, coxsackieviruses A and B, and HSV.

It would, therefore, be interesting to see the results of an in vitro study examining the effects of medium chain fatty acids found in mouse milk on rotavirus infectivity.


Fluorescein dilaurate test of exocrine pancreatic function in cystic fibrosis

SIR.—I read with interest the paper by Drs Dalzell and Heaf, particularly as we had a very similar study published in the Archives of Disease in Childhood three years ago (but no reference was made)! In both studies the index cases and controls were similar in age and number, but we prescribed double the dose of fluorescein dilaurate than did Dalzell and Heaf. Our study also demonstrated significantly different fluorescein dilaurate excretion ratios between patients with cystic fibrosis and normal subjects, with the ratios being significantly reduced in patients with cystic fibrosis (p<001). An additional component to our study was to compare the fluorescein dilaurate test with faecal chymotrypsin estimation. We found a positive correlation between the two tests (r=0.69, p<0.02).

Although the fluorescein dilaurate test appears to detect exocrine pancreatic insufficiency, in practice it is of limited value as it is in capsule form and not suitable for the age group in which the presentation of cystic fibrosis is most prevalent. We did explore the possibility of the test being used to titrate pancreatic supplement administration. If cholecystokinin esterase is responsible for liberating the fluorescein from fluorescein dilaurate, it was incorporated into a pancreatic enzyme supplement, it may be possible to use the fluorescein dilaurate test to determine the most effective dosage of pancreatic enzyme for individual patients. Unfortunately this enzyme does not appear to be present in any of the commercially available preparations.


Effects of overweight on lung function

SIR.—We were very interested in the paper by Dr Pung and colleagues on overweight and lung function, but we have some queries about their approach and results.

To investigate the association between body mass index and lung function in children, the authors included subjects up to 20 years of age. In table 1 they show that distribution of height for the sexes was unequal: 45% of all girls were taller than 150 cm but only 12% were taller than 159 cm. This suggests that most of these females had reached their adult height at age 13, when 75% of Hong Kong girls reach menarche, the median height is 151 cm. On the other hand, 31% of all boys were taller than 159 cm with no skewed distribution. It seems that most boys had not reached adult height yet.

SIR.—We agree with the conclusion of Fer-son's study that there is poor documentation of a child's immunisation status on admission to hospital. In 66% of the children admitted to our hospital the verification of incomplete immunisation the 'medical record of immunisation' was absent or so shortened a form as to be meaningless.

Using information from the district comput-er, we determined the immunisation status of children from Salford who were admitted to a general paediatric ward in a teaching hospital during November 1989. We also obtained details of how the children verified to have incomplete immunisation, including the recorded immunisation history, from the hos-pital notes.

There were 139 admissions of 133 Salford children during the month. The children's ages ranged from 7 days to 15 years with 113 under 5 years of age. Using the immunisation schedules determined at that time, information from the district computer showed that 70 children were fully immunised and 47 incom-pletely immunised; 16 were not traced by the computer.

Information from the hospital notes sug-gested that in five children there was a con-traindication to immunisation and three chil-dren had received the necessary immunisation within the two weeks before admission. The hospital notes for six children were not avail-able. The remaining 33 children could have been offered: triple antigen (n=14), oral polio (n=14), combined diphtheria-tetanus (n=1), meningococcal (n=3), and pertussis immunisation (n=12).

Using Ferson's classification of the 'medical record of immunisation' in the hospital notes, 1 in 27 of the 41 notes (66%) documentation was absent or unclear. In two (5%) it was clear but incorrect, and documentation was correct and clear in only 12 (29%) of notes.

At our children's hospital, sited in a district with poor immunisation uptake, the opportu-nities for immunisation in a single month on one ward are considerable. To immunise in hospital we need accurate information on pre-vious immunisations. Parental recall and medical recording of immunisation provide inadequate data. Two possible solutions are improving access to immunisation information held on district computers and using parent held child health records.