Letters to the editor


Drs Taylor and Emery comment:
The main differences between the Bristol and Sheffield views on unexpected infant deaths are, firstly, that the Bristol group do not accept the concept that several contributory factors may result in a lethal situation, and secondly that they are unable to accept that filicide is the probable cause of a small percentage of cot deaths.

Our view is that many unexpected infant deaths are due to a combination of factors in the same way that the occurrence of some of these fatal deaths may not have occurred.1 The concept of contributory factors is one which is generally accepted—for example, the increased severity of infections in children who have been allowed to fall asleep with only a very reduced pulmonary reserve due to residual lesions in the lung after perinatal damage. Dr Fleming and his group have themselves postulated that overheating and overheating may be a contributory factor in some cot deaths.2

The confidential inquiries undertaken by Dr Fleming and his group with case conferences being hospital based and hospital oriented are very similar to those undertaken in Sheffield in the 1970s, and their results are very similar to ours at that time. In 1979 we started to hold our case discussions on all ‘non-hospital’ deaths in the family doctor’s surgery. These case discussions are held when data collection, including a home visit by a doctor not concerned with the paediatric care of the family, is complete and the results of a full paediatric necropsy are available and at a time when the initial emotional impact of the death is lessening and more dispassionate views may prevail. These discussions, at which the general practitioner and health visitor are invariably present, are as much concerned with planning for the future health care of the family and of any subsequent child as with the cause of the baby’s death. It is clear that confidential discussions with the general practitioner and health visitor that have revolutionised our views on the aetiology of unexpected infant death and have shown us the importance of family and background factors, and it is at these discussions that the possibility of filicide is occasionally raised. Deaths are only placed in this category if at the conclusion of the case discussion it is a unanimous view that this was in fact a probable mechanism of death. The prime reason for identifying this small group (less than 10%) is that an appropriate level of care—paediatric, psychiatric, and health visiting—can be provided for the family. Although the identification of possible filicide only forms a relatively small part of our inquiries, the possibility of this mechanism of death would also deny some families the extra care that they need. Fleming et al state that our data should be inspected by an independent group of paediatricians and pathologists. As we collected more than 50 pages of data after each death this would be a major undertaking. However, we have no secrets other than the confidential nature of information relating to individual families and would welcome a visit from Dr Fleming or one of his colleagues to look at our records, discuss our methods, and attend a case discussion.


Effective bronchodilator treatment by a simple spacer device for wheezy premature infants

SIR,—Yuksel and colleagues describe a cheap and easy solution to a common and difficult problem.1 They cannot help but be impressed by the size of the improvement seen during active treatment.

There are, however, certain aspects of the study which concern me. Firstly, the study was not randomised and all the children were given active treatment after placebo. Although this is disputed by the authors, in this group of children where symptoms are likely to have been exacerbated by viral infections, one would have expected some improvement with time, irrespective of treatment. This possibility is borne out to some extent, as on active treatment there was a 27% reduction in the score for ‘runny nose/us well’, and these symptoms appear to be suggestive of a viral infection. These symptoms could not have been expected to respond to a bronchodilator and therefore should not have been added to cough and wheeze (their table 1). Also adding together scores for cough and wheeze (their table 1) could double the score for a single event. Admittedly the percentage fall in each symptom category, with active treatment, is remarkable.

Secondly, the authors state ‘administration of the bronchodilator resulted in an increase in functional residual capacity both immediately and during the two week active period’. This is patently not borne out by the results in their table 3, where there is no significant difference in functional residual capacity before and after terbutaline. Indeed, mean FRC for the group before and after terbutaline: 252 (75) and 269 (58) in the placebo period and 322 (83) and 325 (95) in the active period. Indeed two and three subjects, respectively, showed a ‘clinically significant’ decrease in functional residual capacity after terbutaline compared with four and two with a ‘clinically significant’ increase. If we are to believe, as the authors suggest, that an increase in functional residual capacity reflects an improvement in lung function, then the long term improvement in functional residual capacity on active treatment occurred without any evidence of an immediate response. The authors do not address this discrepancy between the long and the short term benefit but misleadingly suggest that an improvement in a parameter of functional residual capacity had occurred.

One is left with a sneaking suspicion that at least part of the improvement on active treatment, in symptoms and lung function, could be related to changes with time. Before accepting the alternative conclusion, that in this group of children twice daily terbutaline has a dramatic effect on symptoms, which is largely independent of its immediate bronchodilator properties, it would be wise to confirm the results with a better designed study.

NICOLA WILSON
Department of Paediatrics and Neonatal Medicine, Royal Postgraduate Medical School, Hammersmith Hospital, Du Cane Road, London W12 0NN

Drs Greenough and Yuksel comment:
We thank Dr Wilson for her interest in our paper. In that preliminary study, as no previous data was available, we set out to assess if bronchodilator given by a simple spacer had any effect on symptomatic preterm infants in the first year of life. We found over the two week period in which bronchodilator was administered a significant improvement in lung function and reduction in symptom score.

We are surprised Dr Wilson felt it necessary to reanalyse the acute lung function data as we did not claim that the change in functional residual capacity over 10 minutes was clinically significant. We recognised and stressed in our discussion that the results could in part be explained by an improvement in symptoms with time and felt our results should be confirmed in a randomised trial—which is, as a consequence we have subsequently completed (unpublished observations). In a randomised placebo controlled trial inhaled ipratropium bromide administered via a coffee cup, resulted in similar improvements in functional residual capacity and a reduction in symptom score. Unfortunately many infants are symptomatic in the first year of life, the coffee cup technique is cheap and easy; we therefore, like Dr Wilson, are impressed and we are also pleased with the size of improvement seen during active treatment.1

Gender and the progression of Escherichia coli 0157:H7 enteritis to haemolytic uraemic syndrome

SIR.—The epidemiologic studies of Milford et al continue to advance our understanding of Verocytotoxin producing Escherichia coli and the associated haemolytic uraemic syndrome.1 Notable among their findings is the excess of females in the probable prototype haemolytic uraemic syndrome subgroup and the observation that such excess has been observed previously in other studies. Our own studies have also previously suggested an excess of females among patients with E coli 0157:H7 associated haemolytic uraemic syndrome.2 Although in a univariate analysis this excess was not significantly different from a control group of patients who suffered from E coli 0157:H7 enteritis only, a multivariate analysis disclosed that female gender was possibly an important predictor variable for progression to haemolytic uraemic syndrome.

In order to determine whether the latter association was coincidental, we continued our study to include 37 patients with haemolytic uraemic syndrome and 95 patients with only enteritis. The sex ratios (M:F) in the two groups were 17:20 and 53:42 respectively. In univariate analysis, gender was not associated...