Cereal based oral rehydration solutions

P R KENYA,* H W ODONGO,† G OUNDO,† K WASWA,* J MUTTUNGA,* A M MOLLA,§
S K NATH,‡ A MOLLA,§ W B GREENOUGH III,‡ R JUMA,* AND B N WERE†

*Kenya Medical Research Institute, Nairobi and †Ministry of Health, Kakamega Provincial General Hospital,
Kakamega, Kenya; ‡International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh; and §Aga
Khan University Hospital, Karachi, Pakistan

SUMMARY A total of 257 boys (age range 4–55 months), who had acute diarrhoea with moderate
to severe dehydration, were randomly assigned to treatment with either the World Health
Organisation/United Nations Childrens Fund (WHO/Unicef) recommended oral rehydration
solution or cereal based oral rehydration solution made either of maize, millet, sorghum, or
rice. After the initial rehydration was achieved patients were offered traditional weaning foods.
Treatment with oral rehydration solution continued until diarrhoea stopped. Accurate intake and
output was maintained throughout the study period. Efficacy of the treatment was compared
between the different treatment groups in terms of intake of the solution, stool output, duration
of diarrhoea after admission, and weight gain after 24, 48, and 72 hours, and after resolution
of diarrhoea. Results suggest that all the cereal based solutions were as effective as glucose based
standard oral rehydration solution in the treatment of diarrhoea.

Diarrhoea and its interaction with malnutrition is an
important health problem and a major cause of
death in infants and young children throughout the
non-industrialised world. In these countries children
under 5 years may suffer two to five diarrhoeal
episodes resulting in considerable illness for 20–30
days each year (R E Black, et al, unpublished
observations).1–5 About one in every 10 children
born in these countries dies from diarrhoea before
reaching the age of 5 years.6 It is reported that in
Africa, Asia, and Latin America alone 750–1000
million cases occur in children under 5 years
annually.7

Effective and timely use of oral rehydration therapy
has been shown to reduce the diarrhoea
related mortality. One way of increasing the cover-
age of oral rehydration therapy is to ensure its
availability and accessibility to every household in
areas where diarrhoea is endemic. Knowledge of
how to administer oral rehydration therapy at the
earliest onset of diarrhoea is also vital. World
Health Organisation/United Nations Childrens
Fund (WHO/Unicef) recommended oral rehydra-
tion solution has not been readily available in many
countries because of cost and logistic problems in
procurement and distribution. This is especially the
case in many African countries. The use of packets
of WHO/Unicef oral rehydration solution should
not be the only strategy for reducing diarrhoea
related mortality. Therefore we compared the
efficacy of oral rehydration solutions made from
various low cost cereals readily available and
accessible in most parts of Africa.

Patients and methods

The study was conducted in the paediatric ward of
Kakamega Provincial General Hospital by staff
experienced in conducting balance studies in
children with diarrhoea. The research proposal was
approved by the Scientific and Ethical Review
Committees of the Kenya Medical Research Institute
and the International Centre for Diarrhoeal Disease
Research in Bangladesh (ICDDR, B). Boys aged
4–59 months with a history of three days or less of
diarrhoea, judged to have moderate to severe
degree of dehydration according to WHO criteria,8
and without a history of prior medication were
selected for the study.

Patients with a history of bloody diarrhoea, severe
malnutrition, or signs of any systemic illness (except
malaria) were excluded from the study. Informed
consent was obtained from the parents or legal
guardians of the patients before being included in
the study.

No antibiotics were prescribed. Those needing
antibiotics on clinical indications were taken out of the study. Once included in the study the patients were assigned to the different treatment groups after block randomisation.9

Packets of maize, millet, sorghum, and rice oral rehydration solutions were made up with 60 g of the respective cereals replacing the 20 g of glucose contained in the WHO/Unicef solution. The 60 g of cereal flour was boiled in 1100 ml of water for approximately 6–7 minutes and stirred continuously. The solution was brought to room temperature and electrolytes (sodium chloride 3·5 g, sodium bicarbonate 2·5 g, and potassium chloride 1·5 g) were added before administration.

TREATMENT

Children in the control group received standard WHO/Unicef oral rehydration solution (sodium chloride 3·5 g, trisodium citrate dihydrate 2·9 g, potassium chloride 1·5 g, glucose 20 g, and water 1·0 l) and those in the study groups received cereal based solutions. Patients with severe dehydration received initial rehydration standardised for duration and volume by kg body weight through the intravenous route by half strength Darrow's solution.10 After the initial rehydration of the severely dehydrated patients they were started on oral rehydration. Mothers were trained to feed oral rehydration solution to their children under supervision of research nurses and physicians. Accurate records (± 1 g and ± 1 ml) of intake of the solution, water, or any other food or fluid during the study period were maintained. Stool, urine, and vomit were collected separately and measured at intervals of eight hours. Patients were allowed plain water on demand. After the initial rehydration (six to eight hours) breast feeding and the foods usually fed to the child were continued and offered freely.

Efficacy was measured by assessing the volume of intake of the solution, stool volume, weight gain, and duration of diarrhoea after admission.

LABORATORY TESTS

The stool and urine were examined microscopically on admission. Stool and rectal swabs were cultured for Vibrio cholerae, rotavirus, salmonella, shigella, and Escherichia coli groups. Routine investigations were carried out for clinical care of the patients and included total white blood count, haemoglobin concentration, haematocrit, malaria parasites, and concentrations of serum electrolytes. Body weight was measured on admission and after 24, 48, and 72 hours, and at discharge.

STATISTICAL ANALYSIS

Statistical analyses were based on analysis of variance. Basically comparisons were made between individual cereal based and the WHO/Unicef glucose oral rehydration solutions on the rate of purging, change in body weight, urine output, vomit, solution intake, and duration of diarrhoea after admission.

Table 1 Clinical features of children on different oral rehydration solutions on admission

<table>
<thead>
<tr>
<th>Admission variables</th>
<th>Treatment groups</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maize (n=51)*</td>
<td>Sorghum (n=48)*</td>
<td>Rice (n=51)*</td>
<td>Millet (n=50)*</td>
<td>Glucose† (n=50)*</td>
</tr>
<tr>
<td>Mean (SD) age (months)</td>
<td>12 (6)</td>
<td>13 (9)</td>
<td>10 (5)</td>
<td>11 (6)</td>
<td>11 (8)</td>
</tr>
<tr>
<td>No (%) vomiting before admission</td>
<td>50 (98)</td>
<td>47 (98)</td>
<td>48 (94)</td>
<td>50 (100)</td>
<td>46 (92)</td>
</tr>
<tr>
<td>Mean (SD) diarrhoea duration before admission (hours)</td>
<td>64 (5-6)</td>
<td>63 (6-5)</td>
<td>70 (5-7)</td>
<td>67 (5-7)</td>
<td>69 (4-4)</td>
</tr>
<tr>
<td>Mean (SD) body weight at admission (kg)</td>
<td>8 (1)</td>
<td>8 (2)</td>
<td>8 (2)</td>
<td>8 (2)</td>
<td>8 (2)</td>
</tr>
<tr>
<td>No (%) with moderate dehydration</td>
<td>48 (94)</td>
<td>43 (90)</td>
<td>46 (90)</td>
<td>39 (78)</td>
<td>41 (82)</td>
</tr>
<tr>
<td>No (%) with severe dehydration</td>
<td>3 (6)</td>
<td>5 (10)</td>
<td>5 (10)</td>
<td>11 (22)</td>
<td>9 (18)</td>
</tr>
<tr>
<td>Mean (SD) diarrhoea duration after admission (hours)</td>
<td>45 (21)</td>
<td>50 (20)</td>
<td>42 (10)</td>
<td>51 (11)</td>
<td>46 (9)</td>
</tr>
<tr>
<td>No (%) treatment failures</td>
<td>1 (2)</td>
<td>3 (6)</td>
<td>1 (2)</td>
<td>1 (2)</td>
<td>1 (2)</td>
</tr>
</tbody>
</table>

*Denotes successfully rehydrated cases only.
†WHO/Unicef recommended solution.
Table 2 Fluid balance at the end of 24 hours treatment. Results are mean (SD)

<table>
<thead>
<tr>
<th>Type of oral rehydration solution</th>
<th>Intake in ml/kg body weight</th>
<th>Output in ml/kg body weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oral rehydration solution</td>
<td>Plain water</td>
</tr>
<tr>
<td>Maize</td>
<td>201 (29)</td>
<td>37 (11)</td>
</tr>
<tr>
<td>Sorghum</td>
<td>177 (24)†</td>
<td>48 (16)</td>
</tr>
<tr>
<td>Rice</td>
<td>196 (23)</td>
<td>38 (8)</td>
</tr>
<tr>
<td>Millet</td>
<td>200 (26)</td>
<td>40 (10)</td>
</tr>
<tr>
<td>Glucose*</td>
<td>214 (31)</td>
<td>39 (8)</td>
</tr>
</tbody>
</table>

*WHO/Unicef recommended solution.
†0.02<p<0.05; §0.02<p<0.05; §0.04<p<0.05.

Results

Clinical information relating to the study patients is presented in table 1. There were no significant differences between the individual treatment groups of cereal based and WHO/Unicef glucose solutions with regard to any of the clinical features. The mean (SD) ages of patients in each treatment group were similar 10 (0-8) to 13 (1-3) months. The five groups were also comparable with respect to mean duration of diarrhoea before admission, degree of dehydration, admission body weight, and mean duration of diarrhoea. After admission of the 257 patients recruited into the study, 250 (97%) were successfully rehydrated. No adverse reactions or complications were noticed in any of the treatment groups.

The main cause of failure and subsequent removal from the study of these seven patients was due to persistent refusal to take the oral rehydration solution and subsequent negative fluid balance as indicated by continued loss of weight and concomitant worsening of dehydration. Preadmission vomiting was reported in 92–100% of the patients. There were no significant differences in the amount of oral rehydration solution, plain water, and total intake among any of the groups at the end of the first 24 hours of therapy (table 2 and figure). Full rehydration was achieved during the first 24 hours of treatment. Stool output or purging rates and urine output were also comparable in all the five groups.

Table 3 Percent body weight gain by 24 hour periods in different oral rehydration solutions. Results are mean (SD)

<table>
<thead>
<tr>
<th>Type of oral rehydration solution</th>
<th>No 24 Hours</th>
<th>No 48 Hours</th>
<th>No 72 Hours</th>
<th>No Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>51 (1-2)</td>
<td>42 (2-3)</td>
<td>29 (3-4)</td>
<td>51 (4-1)</td>
</tr>
<tr>
<td>Sorghum</td>
<td>48 (1-2)</td>
<td>36 (2-3)</td>
<td>21 (2-3)</td>
<td>48 (5-1)</td>
</tr>
<tr>
<td>Rice</td>
<td>51 (2-3)</td>
<td>48 (1-2)</td>
<td>34 (1-2)</td>
<td>51 (3-1)</td>
</tr>
<tr>
<td>Millet</td>
<td>50 (3-1)</td>
<td>43 (2-3)</td>
<td>26 (3-1)</td>
<td>50 (2-4)</td>
</tr>
<tr>
<td>Glucose*</td>
<td>50 (1-7)</td>
<td>48 (2-1)</td>
<td>28 (2-0)</td>
<td>50 (3-2)</td>
</tr>
</tbody>
</table>

*WHO/Unicef recommended solution.
The group receiving the maize based solution had a lower stool output than the control group receiving WHO/Unicef glucose based solution, but this difference was not significant. Vomit of 28 (8) ml and 25 (6) ml in the groups receiving the maize and sorghum based solutions respectively were each significantly higher than that found in the control group (16 (3) ml, p<0.05). There were no differences in absorption of the oral rehydration solution per kg weight between the treatment groups (figure).

All treatment groups and the control group showed similar weight gain compared with admission weight after 24, 48, and 72 hours of hospitalisation and at the resolution of diarrhoea (table 3).

Discussion

After reports of successful trials of rice based oral rehydration solutions in Asia,11-14 the Kenya Medical Research Institute decided to test some of the cereals that are widely available in Africa. Apart from a pilot study by Kinoti et al on a maize based solution,15 we believe that this is the first study to assess the efficacy of different cereal based solutions in the management of acute childhood diarrhoea.

We attempted to follow recommended clinical practice by offering food with the solutions after the initial rehydration as oral rehydration solutions have little nutrient value. Molla et al (A M Molla, unpublished observations) found that cereal based solutions were superior to the standard glucose based solution in children who were not fed, but their efficacy became similar after introduction of food in the first 24 hours of treatment.

When food based solutions are used proper feeding practices must be emphasised to mothers as they are likely to assume that adequate feeding is being provided to the child during administration of the food based solution. This assumption could be a serious disadvantage of these food based solutions, but we believe that underfeeding is unlikely to occur on a large scale when proper training is given.

While prospective and intensive clinical research is awaited, the next stage of this investigation would be to study the efficacy of a cereal-salt solution with locally available ingredients. The ultimate objective of any programme of oral rehydration is to expand the availability of solutions to every home in developing countries where diarrhoea is a major health problem among children. Mothers should be able to use ingredients available within their kitchens to prepare a solution and to initiate treatment at the very beginning of the onset of a diarrhoeal episode. This will make the programme self sufficient and will minimise the immediate and long term problems seen in children with diarrhoea.

The provision of packets of glucose based solutions to cover every episode of diarrhoea is neither feasible nor affordable at present in Kenya and in Africa at large. Therefore, a simple, effective and traditional home remedy will be the ideal solution for the treatment of diarrhoea.

We wish to thank Miss Hosna Ara Begum (assistant matron) and Akbar Ali (laboratory biochemist) of ICDDR, B, the nursing, medical, and laboratory staff from Kakamega Provincial General Hospital who worked on this study, and the Ministry of Health for participating in this research.

These studies were supported by the Aga Khan Foundation’s grant to The Kenya Medical Research Institute and to ICDDR,B.

References