99mTc dimercaptosuccinic acid (DMSA) scan in urinary tract infection

Sir,

Dr Smellie et al, in their recent paper on 99mTc dimercaptosuccinic acid (DMSA) scan in patients with established renal scarring, quoted a paper from this hospital. They failed to quote the principal findings of this paper, however, namely that a DMSA scan is the most accurate method of detecting renal scars in children 0-5 years old. In our paper we compared intravenous urograms, ultrasound, and a DMSA scan carried out over a six month period in 63 children known to have vesicoureteric reflux. A total of 60 children were found to have scarring on DMSA scans, 50 on ultrasound, and only 36 on intravenous urograms. The severity of the scarring was assessed and a highly significant difference was obtained for coupled comparisons of the three modalities—that is, between DMSA scanning and ultrasound, ultrasound and intravenous urography, and DMSA scanning and intravenous urography. None of the changes identified on a DMSA scan in this group was reversible indicating that the appearances were not the result of recent acute infection.

The data were also assessed according to the age of the children, and the discriminating power between the techniques became less noticeable with increasing age.

In our hands 99mTc DMSA scanning is neither expensive nor time consuming (about £35 per examination). Reactions to DMSA are exceptional but there is still a definite morbidity and mortality associated with contrast media, even the non-ionic form. In our department scanning is carried out 1-5 hours after injection and takes 15-20 minutes. We never perform DMSA and diethylene-triamine pentaacetic acid (DTPA) scans simultaneously.

In this hospital the DMSA scan is used as the first line investigation of the renal tract in urinary tract infection. Intravenous urography is carried out only for assessment of possible structural abnormality, particularly before surgery. Reliance on intravenous urography and ultrasound, especially in those under 5 years old, will result in inadequate detection, treatment, and follow up of renal scarring.

The teenage coeliac: follow up study of 102 patients

Sir,

We read with interest and pleasure the paper by Kumar and colleagues on the teenage coeliac. We were surprised, however, that height distribution of their teenagers with coeliac disease was nearly normal despite the fact that nearly half of them (45/102) confessed not to adhere to the gluten free diet and most (36/44) of the biopsy specimens showed jejunal mucosa abnormality.

In our longitudinal study we followed up 43 children with coeliac disease who, after initial diagnosis at the mean age of 13 months (range 4-31 months) and a gluten free diet for one to three years (mean 15 months), abandoned this treatment and returned to a normal gluten containing diet. We followed patients up with a yearly clinical and anthropometric assessment and a duodenal biopsy. There was a gradual decrease in the number of the assessed patients because they either returned to the gluten free diet or were lost to follow up. All measurements were interpolated by Tanner’s method to obtain data at regular yearly intervals. Such interpolated data were transformed into standard deviation scores (SDS) according to Tanner’s formula SDS=(Xe-Xm)/SDm where xe is the measurement at the relevant age and Xm and SDm are normal mean and normal standard deviation at the age in question, respectively (see table). Means of standard deviation scores were compared with the normal means by the Student’s t test for unpaired groups. We found that at each of the yearly age intervals the persistent histological relapse was paralleled with significant height deficit.

Similar linear growth retardation was evidenced by Colaco et al in their cross sectional study of Irish adolescents with coeliac disease aged between 17-8 and 18-5 years—therefore after their pubertal spurt. The 102 coeliac children reported by Kumar et al are a ‘mixed society’; more than half (58/102) did not have a biopsy specimen taken at the time of the study. Of the 44 who did have a biopsy, eight had normal mucosa, 19 showed moderate and 17 gross abnormality. Some of these children were at their pubertal spurt, some were older. It is

References

Table Mean and SD of height expressed as standard scores (SDS) at yearly age intervals in children with ‘neglected’ coeliac disease and persistent histological relapse

<table>
<thead>
<tr>
<th>Age at assessment (years)</th>
<th>Mean height SDS (SD)</th>
<th>p Value</th>
<th>No of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-0.65 (0.88)</td>
<td><0.001</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>-1.10 (0.90)</td>
<td><0.001</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>-0.76 (0.90)</td>
<td><0.001</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>-1.08 (0.84)</td>
<td><0.001</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>-0.86 (0.97)</td>
<td><0.01</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>-1.06 (0.81)</td>
<td><0.001</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>-0.85 (0.67)</td>
<td><0.01</td>
<td>10</td>
</tr>
</tbody>
</table>
Leukoencephalopathy after prophylactic radiation for leukaemia in ataxia telangiectasia

Sir,

In their short report, Eyre and her colleagues remind readers of the possible harmful effects of therapeutic doses of radiation treatment and tumour chemotherapy in patients with ataxia telangiectasia. Although the radiological appearances in their patients seem consistent with a diagnosis of treatment induced encephalopathy, is it certain that these findings were not those of ataxia telangiectasia itself? What are the findings on computed tomography in children over 5 years with ‘uncomplicated’ ataxia telangiectasia?

Assuming that this objection can be countered, I wish to challenge the contention, at the end of the report, that ‘... in children with acute lymphoblastic leukaemia prophylactic cranial irradiation and intrathecal methotrexate should be either withheld or given in reduced dosages’. This recommendation, as far as radiation treatment is concerned, is correct but for methotrexate is misleading and potentially mischievous, for the following reasons: Eyre et al claim that ‘histological examination showed features diagnostic of a chemoradiation induced leukoencephalopathy’ (my italics); however, so far as I am aware, there is no evidence in the literature that radiation treatment induced and radiation treatment/chemotherapy induced damage in ataxia telangiectasia are histologically distinguishable. Radiation treatment is an acknowledged cause of cellular damage in ataxia telangiectasia, both ‘in vitro’ and ‘in vivo’, whereas only a few drugs in clinical use—for example, bleomycin—have been implicated. ‘In vitro’ data for other drugs is not readily available but children with ataxia telangiectasia have been reported to tolerate systemic methotrexate/6-mercaptopurine treatment in normal doses. It would be interesting, in the Newcastle case, to know the temporal distribution of the reported ‘gaps and reductions’ in methotrexate/6-mercaptopurine treatment. If most occurred during the first year of treatment, rather than the second, it may be that lingering radiation treatment induced DNA damage to bone marrow in the craniocervical area, rather than chemotherapy, was blameworthy. A possible increase of vinca-alkaloid induced neurotoxicity has been noted in one report, but is not mentioned in others. This report, which includes a literature review, also contains the specific statement ‘No adverse effects from monthly intra-thecal methotrexate were noted in our patients’.

Although ataxia telangiectasia is itself very rare it is relatively more common in the selected group of children who develop acute lymphoblastic leukaemia or malignant lymphoma. While it is clear that radiation treatment must be given in reduced dosage—if at all—to patients with ataxia telangiectasia, and though vincristine is still ‘sub judice’ it would be unfortunate if intrathecal or systemic methotrexate (or systemic 6-mercaptopurine, asparaginase, or anthracycline) doses were automatically scaled down or omitted. For children with ataxia telangiectasia and acute lymphoblastic leukaemia or lymphoma, the likely outcome would be an increased relapse rate. In many countries children’s cancer treatment is now coordinated by national children’s cancer study groups. Specific treatment recommendations for children with ataxia telangiectasia and malignancy are needed and could be publicised by these groups (in this country, the UKCCSG).

Incidentally, the terms ‘central nervous system prophylaxis’ and ‘maintenance treatment’, as used in the article, are inaccurate and archaic and should be abandoned. ‘Central nervous system-directed treatment’ and ‘continuing treatment’ are preferred alternatives.

References

J Pritchard
Hospital for Sick Children,
Great Ormond Street,
London WC1N 3JH

Dr’s Eyre, Gardner-Medwin, and Summerfield comment: Dr Pritchard’s points are important ones and we very much agree with his main premise that no form of chemotherapy