Annotations

Intervention after birth asphyxia

Despite improvements in fetal monitoring and neonatal resuscitation, every district general hospital has a number of full term infants every year who suffer from the effects of severe lack of oxygen before or during delivery. Approximately six per 1000 full term infants develop hypoxic-ischaemic encephalopathy and one per 1000 will die or survive with severe neurological disability. In Great Britain, 300-400 children per year survive birth asphyxia with serious brain damage.

Paediatricians have vigorously tried to improve standards of neonatal resuscitation in the delivery ward but have found hypoxic-ischaemic encephalopathy a difficult problem to treat. A common attitude is that the damage has been done before arrival in the neonatal intensive care unit and treatment is too late to repair neural cell death. The prognosis has seemed so hopeless in some cases that withdrawal of intensive care has seemed the kindest solution. Are we being too negative about the encephalopathy? This annotation discusses the emerging evidence that management after initial resuscitation may influence neurological outcome.

Hypoxic-ischaemic encephalopathy

After resuscitation a proportion of infants become neurologically abnormal during the next 48 hours. This encephalopathy can be clinically classified into: mild (irritability, poor sucking, and hypotonia), moderate (convulsions, lethargy, and appreciably abnormal tone), and severe (comatose with prolonged seizures and respiratory failure). Out of 24 infants with moderate encephalopathy, one died and five survived with severe handicap. Out of 21 with severe encephalopathy, 13 died and three survived with severe handicap. Of the infants with mild encephalopathy, only one became handicapped and this child had a congenital myopathy.

Convulsions

Generalised tonic-clonic convulsions should be treated as they tend to interfere with respiration and raise intracranial pressure. We start treatment with phenobarbitone 20 mg/kg intravenously as a loading dose. If convulsions continue, paraldehyde 3 ml/kg/ hour of a 5% solution is given intravenously until the seizures stop. Continued seizures are treated with phenytoin 20 mg/kg and diazepam 0.3 mg/kg intravenously.

Postasphyxial seizures can be very resistant to treatment and intravenous clonazepam, lignocaine, chlormethiazole, and sodium valproate can be considered in such cases. Whether one should treat a comatose, ventilated baby who is having subtle seizures or purely electrical seizures is arguable. Neonatal seizures deplete the brain of high energy substrates and interfere with brain cell division but large doses of anticonvulsants may have adverse effects: particularly respiratory and circulatory depression. It used to be thought that high dose barbiturate might have a protective effect after hypoxia by reducing cerebral metabolic requirements. A trial of thiopentone in severely asphyxiated infants, however, gave no evidence of benefit. Indeed hypotension was a troublesome side effect of thiopentone.

Control of raised intracranial pressure

The brain commonly reacts to severe hypoxia by developing oedema over a period of 24-48 hours. The skull is able to accommodate some degree of brain swelling by squeezing cerebrospinal fluid out of the cranium. Moreover, neonates can tolerate some further brain swelling without the pressure rising because of the unfused sutures and the open fontanelles. Severe cerebral oedema can exceed the cranial compliance, however, and cause the pressure to rise above the normal upper limit of 6 mm Hg (0.80 kPa). We have used the same subarachnoid pressure catheter technique as Levene et al to monitor intracranial pressure in asphyxiated neonates and have confirmed their findings that raised pressure in some infants can be temporarily lowered by intravenous mannitol, that sustained intracranial hypertension (>15 mm Hg [2.00 kPa]) resistant to treatment has a very bad prognosis, and that some infants can have severe encephalopathy and bad outcome without raising intracranial pressure above 10 mm Hg (1.33 kPa). We have extensively investigated non-invasive measurement of intracranial pressure via the fon-
chondria activating phospholipase, release of oxygen free radicals, and excitatory amino acids such as glutamate. Steen et al showed that the calcium channel blocker nimodipine improved survival when given after complete cerebral ischaemia in primates. Thiringer et al carried out a randomised trial of oxygen free radical scavengers (methionine, mannitol, and magnesium sulphate) and the calcium channel blocker lidoflazin in lambs subjected to acute umbilical cord occlusion. She found that the lambs treated within 5 minutes of resuscitation retained cerebral blood flow better than controls. The treated lambs also had better somatosensory evoked potentials and cerebral cortical function. There are no published studies on glutamate antagonists, free radical scavengers, or calcium channel blockers in human neonates.

Prognosis

Nelson and Ellenberg found that an Apgar score of <4 at 20 minutes gave a 57% chance of cerebral palsy in survivors. Steiner and Nelligan found that all full term infants who failed to establish respiration by 30 minutes subsequently had spastic quadriplegia and mental retardation. It has been a common practice to discontinue further resuscitation if there is no respiratory effort after 30 minutes. Infants with severe encephalopathy who have persistently raised intracranial pressure (>15 mm Hg (2.00 kPa)) resistant to mannitol also have an extremely poor outlook. In the future, electroencephalography, cerebral blood velocity by Doppler, and phosphorus magnetic resonance spectroscopy may help to give us an accurate prognosis at an early stage. Asphyxiated infants who are assessed very early to have a bad prognosis are the ones who should be considered for therapeutic trials of cerebral protection.

References


A Whitelaw
Department of Paediatrics and Neonatal Medicine,
Hammersmith Hospital,
DuCane Road,
London W12 0HS