SAGM blood

Sir,

In reply to the letter by Robertson and Chiswick, doctors in Sweden probably have the most experience of using SAGM blood. If it is to be used for exchange transfusion they recommend storage for less than five days followed by centrifugation and replacement of the supernatant with frozen AB serum. When reconstituted this provides about 4-5 mg/kg body weight of adenine in each exchange transfusion. They have reported excellent results in neonates. For ‘top up’ transfusions they use red cells in SAGM, estimating that 10 ml will supply 0.57 mg/kg body weight of adenine. This they consider a safe concentration that will be metabolised between transfusions. They have no evidence of complications associated with mannitol (C F Hogman, personal communication).

Dr N Luban presented the results of some cases at a workshop on paediatric transfusion organised by the American Association of Blood Banks in 1985, and described crystals found at necropsy in the kidneys of two babies who had received citrate phosphate dextrose adenine blood. Whether these crystals were in fact 2,3-dihydroxyadenine and whether they had caused any renal damage was not clear.

Kreuger suggested that the kinetics of adenine metabolism are safe if citrate phosphate dextrose adenine blood is used for exchange transfusions. Despite the lack of evidence to suggest that SAGM blood may cause problems in neonates, we continue to use citrate phosphate dextrose as the anticoagulant in our practice.

References

K P WINDEBANK
Graduate School of Medicine,
and
S B MOORE
Blood Bank and Transfusion Services,
Mayo Clinic,
Rochester, Minnesota 55905, USA

Glycosylated haemoglobin in cystic fibrosis

Sir,

In their letter Caiger et al reported on glycosylated haemoglobin concentrations in children with cystic fibrosis. They concluded that this measurement could be of value in the early detection and treatment of associated diabetes mellitus in such patients. Bistrizter et al, however, reported significantly higher glycosylated haemoglobin concentrations in children with cystic fibrosis than in control subjects even in the absence of documented glucose intolerance. Most of these children were on long term antibiotic treatment.

We would like to draw attention to the interference in glycosylated haemoglobin estimations by penicilloylated haemoglobin. We became aware of this interference when we measured the extent of haemoglobin glycosylation both indirectly by chromatography as haemoglobin A1 and specifically by the thiobarbituric acid method in children with cystic fibrosis. (Flückiger R, Mathews W, unpublished observations, presented at US National Institute of Health Conference ‘Biological mechanisms in aging’, June 1980.)

The mean glycosylated haemoglobin concentration in children with cystic fibrosis but without diabetes was 9% compared with 7% in control subjects. In contrast, thiobarbituric acid values converted for comparison to glycosylated haemoglobin equivalents were 8% in children with cystic fibrosis and 7% in controls. The usual association between these two indices of haemoglobin glycosylation was apparent from the data for children with cystic fibrosis and overt diabetes but not for those without glucose intolerance (figure). Examination of the clinical records of the children with raised glycosylated haemoglobin concentrations and normal thiobarbituric acid values showed that these children had all been receiving long term treatment with high doses of beta lactam antibiotics. In vitro incubation of haemoglobin with beta lactams leads to covalent attachment of the penicilloyl moiety to haemoglobin and causes glycosylated haemoglobin mobility of the respective haemoglobin. Direct identification of the penicilloyl moiety in the glycosylated haemoglobin fraction from children with cystic fibrosis was unsuccessful because of the small amounts of penicilloylated haemoglobin.

We conclude that glycosylated haemoglobin measurements can be misleading in children with cystic fibrosis receiving treatment with penicillin. In these patients determination of haemoglobin glycosylation by specific
Rotavirus encephalitis

Sirs,

Ushijima et al describe rotavirus encephalitis1 and benign convulsions in children with rotaviral gastroenteritis. We report briefly a further case of probable rotavirus encephalitis.

A boy of 20 months was admitted with a two day history of profuse watery diarrhoea. Admission was precipitated by a tonic clonic fit lasting about 10 minutes. There was no other history of fits in the child or his family, and his psychomotor development had been normal. A second fit occurred at the referring hospital and he had two further fits within 24 hours of admission to the infectious disease unit. He never became febrile.

On examination he was not feverish and fully conscious. Examination of cerebrospinal fluid was entirely normal, plasma concentrations were sodium 135 mmol/l, potassium 4.4 mmol/l, chloride 99 mmol/l, bicarbonate 19 mmol/l, urea 4.6 mmol/l, glucose 3 mmol/l, calcium 2.21 mmol/l, phosphate 1.31 mmol/l, and haemoglobin 124 g/l; the white cell count was 10.1 x 10^3/l. Chest and skull x-ray pictures, and computed tomogram of the brain were all normal. Cultures of urine and blood were sterile. No pathogens were cultured from swabs of the throat or nose, and no virus was detected in cerebrospinal fluid, urine, or swabs from the throat and nose. Paired serum samples showed no evidence of recent infection with rubella, mumps, herpes hominis, varicella zoster or measles virus, nor with influenza virus A or B, adenovirus, chlamydia, Clostridium burnetti, or Mycoplasma pneumoniae. An enzyme immunoassay showed rotavirus in the faeces but no rotavirus antibody was detected in the cerebrospinal fluid.

The first electroencephalogram showed a general excess of slow activity most marked in the left temporal region and suggestive of encephalitis. Follow up studies showed gradual improvement with return to normal rhythms four months after admission. During this time his behaviour was aggressive and disruptive, but this settled as the results of the electroencephalograms improved. He continues to develop normally at the time of writing.

The patient was treated with intravenous acyclovir for five days and phenobarbitone. Anticonvulsant treatment was discontinued at the onset of the behavioural abnormalities which did not improve. In retrospect it seems our patient had benign convulsions associated with rotavirus encephalitis but without specific antibody in the cerebrospinal fluid, as described by Ushijima et al.2

I thank Dr J Stevenson for permission to report this case and the Regional Virus Laboratory, East Birmingham Hospital for the ELISA for rotavirus antibody.

References

S P CONWAY
Department of Paediatrics, Infectious Diseases, Seacroft Hospital, Leeds LS14 6UH

Noonan’s syndrome and neurofibromatosis

Sirs,

In the February 1987 issue Shuper et al described a 12 year old boy alleged to be suffering from Noonan’s syndrome and neurofibromatosis.1 There seems little doubt that their patient had Noonan’s syndrome but the evidence for coexisting neurofibromatosis is based solely on the presence of 20 or more cafe au lait spots, 10 of which were told were, at the time of writing, over 1.5 cm in diameter.

In the introduction these authors state, ‘Multiple cafe au lait spots are regarded as pathognomonic of von Recklinghausen’s neurofibromatosis and have not been reported with Noonan’s syndrome.’ (my italics). In support of this statement, which is incorrect, they quote a paper by Mendez et al.2 Dr Mendez, however, in the same issue of the American Journal of Medical Genetics (July 1985) wrote a review article in which she stated ‘... Noonan’s syndrome individuals frequently have multiple pigmented moles, cafe au lait spots and other pigmentary dysplasias’.3 Furthermore, in two other articles in the same issue of the journal, it is made abundantly clear that cafe au lait spots are a common finding in Noonan’s syndrome alone.4,5

Dr Mendez tells me (personal communication) that in her experience in Brazil at least 10% of patients with Noonan’s syndrome have cafe au lait spots.

The Israeli boy reported by Shuper et al should, therefore, have been regarded at that stage as having Noonan’s syndrome. As he was, however, clearly prepubertal at the time of writing, it is still possible that he may develop (perhaps in late adolescence or early adulthood) neurofibromata or indeed other manifestations of the peripheral form of von Recklinghausen’s neurofibromatosis that would then permit a diagnosis of neurofibromatosis Noonan’s syndrome, a recently described and rare concurrence.6 7

Authors commenting on cafe au lait spots in Noonan’s syndrome tend not to give details of the size of the cutaneous lesions in their case reports. In future it would...