Giving drugs per rectum for systemic effect

Suppositories were used as early as 1500 BC by the Egyptians for the local treatment of haemorrhoids and constipation. These suppositories were made by rolling conical chips of wood or bone in honey in which a drug had been boiled until the solution was nearly solid. A thousand years later Hippocrates described the use of a suppository made of anise, myrrh, goose greese, and honey as a specific relief for asthma, but it was in Britain in the seventeenth century that the word 'suppositorium' was first used.1

The Egyptian technique of using inspissated honey was used until the end of the seventeenth century. Cocoa butter was then used as it liquefied readily on warming and could be mixed with various ingredients; it quickly formed a hard wax and yet conveniently dissolved in the rectum. It was in general use for the next two hundred years, until the introduction of water soluble polyethylene glycols. The importance of the base used in the formulation of a suppository has been reported over the past 20 years.

Acceptability to the patient

Suppositories are commonly used in certain parts of Europe, but not in the United Kingdom. It is clear from the amount that has been written on the subject that the cultural influences of the parent, the child, and the doctor all have an effect on the acceptability of the treatment. Although it is often difficult to get young children to take their medicine by mouth there is no evidence to suggest that compliance is improved if suppositories are prescribed.

Indications for giving drugs through the rectum

There are several circumstances under which it may be preferable to give a drug through the rectum as opposed to intramuscularly or intravenously; these include circumstances in which the patient is unconscious; nauseated or vomiting; or if oral intake is forbidden immediately before operation. First pass elimination in drugs with a high hepatic clearance may also be avoided in this way.

Absorption from the rectum

The rectum is drained by the superior, middle, and inferior rectal veins. The superior rectal vein drains through the inferior mesenteric vein into the portal vein, whereas the inferior and middle rectal veins drain directly into the inferior vena cava through the internal pudendal and internal iliac veins. There are extensive anastomoses between the rectal veins.

When a drug is taken orally and absorbed from the gastrointestinal tract, it enters the portal vein and is metabolised in the liver. If it is one which is principally broken down in the liver—for example, morphine, hydralazine, or propranolol, it does not achieve its optimal effect when taken orally. If it is given through the rectum however, better absorption and greater systemic effect may be achieved.

The mechanism of rectal absorption is probably similar to that of the upper part of the gastrointestinal tract, despite differences in pH, surface area, and fluid content. The use of surfactants can increase the amount of absorption of a drug from the rectum; they can, however, damage the rectal mucosa and so their use requires further investigation. The effects of different pharmaceutical formulations of the suppository may also affect the availability of the drug, and this has been particularly well documented concerning paracetamol.2

A practical problem with the use of suppositories is premature expulsion, which may result in inadequate absorption.

Specific drugs

Anticonvulsants. A solution of diazepam given rectally is effective for treating convulsions in children, therapeutic plasma concentrations being obtained within four minutes.3 There is a considerable delay in the achievement of a therapeutic plasma concentration of diazepam after the use of suppositories, and with the introduction of rectal solutions there is no indication to use suppositories. The two major indications for the use of diazepam solution rectally in children are by parents at home for children who suffer from either febrile convulsions or recurrent, poorly controlled epilepsy, or by a doctor when immediate intravenous access is not technically possible. It is preferable to give diazepam intravenously in a paediatric unit or in an accident and emergency department, as therapeutic plasma concentrations are more readily achieved by this route. Although clonazepam can be administered rectally, it takes up to 20 minutes for
therapeutic plasma concentrations to be achieved.
Paraldehyde used to be given rectally in the
United States of America, but we now know that
rectal absorption of paraldehyde is considerably
slower than if it is given either intramuscularly or
orally and it is therefore unsuitable for treating
epilepsy. Paraldehyde can also irritate the rectum
and large intestine when given rectally, and decom-
posed paraldehyde has caused perforation of the
large bowel. It is far safer to administer it as a deep
intramuscular injection.

Antibiotics. Metronidazole suppositories are effec-
tive in reducing the postoperative anaerobic wound
infections in children with appendicitis. The sup-
positories are considerably cheaper than the in-
travenous infusion, and pharmacokinetic studies
have shown that they produce therapeutic plasma
concentrations. If, however, the child has an in-
travenous line, it is preferable for the drug to be
given intravenously.

Paracetamol. Paracetamol is used mainly as an
antipyretic in children. Although paracetamol sup-
positories are not commercially available, most
hospital pharmacies produce their own. The for-
mulation of the suppository influences the avail-
ability of the paracetamol, and there are few data on the
bioavailability of the paracetamol in suppositories in
different hospitals. The major clinical indication for
giving paracetamol rectally is if a child is admitted
with an acute febrile convulsion, and the paracetam-
ol can be administered before the child wakes up.
Paracetamol is also useful in suppository form for
children who have fevers associated with vomiting.

Other drugs. Theoretically, morphine is an ideal
drug to be given rectally as it is extremely well
absorbed. A pharmacokinetic study following rectal
morphine (0.15 mg/kg) in propylene glycol, how-
ever, showed plasma concentrations that were
inadequate for pain relief. Rectal theophylline has
been used for children with asthma, but with the
advent of oral slow release theophylline prepara-
tions suppositories have been superseded. There
have been several reports of one or more drugs
given rectally as premedication before operation.
Unfortunately, little data were given on the accept-
ability of the rectal compared with the intramuscular
route.

References
1 Senior N. Review of rectal suppositories. I. Formulation and
2 de Boer AG, Moolenaar F, de Leede LGJ, Breimer DD. Rectal
drug administration: clinical pharmacokinetic considerations.
3 Knudsen FU. Plasma diazepam in infants after rectal adminis-
tration in solution and by suppository. Acta Paediatr Scand
4 Ford WDA, MacKellar A, Richardson CJL. Pre- and postop-
erative rectal metronidazole for the prevention of wound
160–3.
5 Lindahl S, Olsson AK, Thomson D. Rectal premedication in
children. Use of diazepam, morphine and hyoscine. Anaesthesia
6 Lindsay WA, Shepherd J. Plasma levels of thiopentone after
premedication with rectal suppositories in young children. Br J
Anaesth 1969;41:977–84.

I A CHOONARA
Department of Paediatrics and
Child Health,
St James’s University Hospital,
Leeds LS9 7TF