Inadequate humidification of respiratory gases during mechanical ventilation of the newborn

W O TARNOW-MORDI, P SUTTON, AND A R WILKINSON

Neonatal Unit, Department of Paediatrics, John Radcliffe Hospital, Oxford

SUMMARY Proximal airway humidity was measured during mechanical ventilation in 14 infants using an electronic hygrometer. Values below recommended minimum humidity of adult inspired gas were recorded on 251 of 396 occasions. Inadequate humidification, largely due to inadequate proximal airway temperature, is commoner than recognised in infants receiving mechanical ventilation.

Little is known about actual values of inspired gas humidity during mechanical ventilation of infants. The British Standard recommends as adequate a minimum of 33 mg H₂O/l of inspired gas in adults and older children receiving ventilatory help.¹

Previously described methods for measuring gas humidity have included the use of chemical absorptive agents, estimation of dew point, wet and dry bulb thermometry, gravimetry,² and mass spectrometry.³ None has proved easy to use in clinical practice. Electronic hygrometry is a recent technique that seems more suitable for clinical use.⁴

We describe the first experience with a small, commercially available, electronic hygrometer in monitoring gas humidity in the proximal airway of mechanically ventilated infants.

Methods

The device is a battery operated hygrometer (Rotronics Hygrokop GTL, Centronics Sales Ltd, Croydon) measuring 25×6 cm. Temperature is determined by a heat sensitive thermocouple and relative humidity by a capacitive sensor. This is an organic polymer dielectric whose capacitance varies linearly with ambient moisture content between 0–100% relative humidity. Its response is non-linear in supersaturated atmospheres, tending to overestimate relative humidity above 100%.

The sensor and thermocouple were most conveniently placed in the patient manifold of the ventilator circuit 3–6 cm distal to the temperature probe of the humidifier. At this site the device estimated the average humidity of inspired and expired gas, not that of inspired gas alone. Absolute humidity was calculated from relative humidity using values of saturated water vapour pressure in standard tables.⁵ No attempt was made to correct for daily variations in atmospheric pressure, the rise in pressure in the circuit due to positive pressure ventilation, or the variation in estimation of relative humidity between air and 100% oxygen.

Humidity measurements. The humidity sensor was employed during ventilation of 14 infants on a conventional ventilator circuit with a tracheal cuff or a small-bore endotracheal tube. For each infant, 12 humidification settings were compared: 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, and 0% humidification (the latter with the humidifier in the circuit). Measurements were taken for 5 minutes at each setting. We chose this circuit design because it approximates the humidification provided during ventilation of term infants. The sensors were calibrated using a temperature and humidity control chamber (Harpin Scientific, West Yorkshire) with a known temperature and relative humidity of 37°C and 100%.

The device was connected between the respirator and the humidifier in the ventilator circuit, i.e., the inspired gas passed through the device. The results of the measurements were compared with those obtained using a psychrometer and a hygrothermometer (Centronics, Croydon) for the same settings. A portable electronic hygrometer (Tarnow-Mordi Scientific, West Yorkshire) was also employed for these comparisons.

During mechanical ventilation the device was resited 3–6 cm distal to the temperature probe of the humidifier. At this site the device estimated the average humidity of inspired and expired gas, not that of inspired gas alone. Absolute humidity was calculated from relative humidity using values of saturated water vapour pressure in standard tables. No attempt was made to correct for daily variations in atmospheric pressure, the rise in pressure in the circuit due to positive pressure ventilation, or the variation in estimation of relative humidity between air and 100% oxygen.

We thank Dr D Haigh and Dr P Dear for permission to report their patients.

References

Correspondence to Dr D W Beverley, St James's University Hospital, Leeds, West Yorkshire, England.

Received 17 February 1986
calibrated in an airtight chamber at 30°C–40°C for one to four hours over saturated solutions of seven crystalline salts. A mean of three to six readings of relative humidity was taken. The predicted value of relative humidity was taken from standard tables. Measurements of proximal airway temperature and humidity were made in infants receiving artificial ventilatory help using Fisher Paykel MR 310 and MR 320 and Bennett Cascade II humidifier systems. Clinical staff were responsible for the ventilator and humidifier settings. The infants were between 2 hours and 3 months old. Measurements were discontinuous and made during periods lasting between one and 36 hours. The infants were nursed under a radiant heat source, and the humidifier temperature probes in the ventilator inspiratory tubing were not shielded.

Results

Over saturated salts, the hygrometer estimated relative humidity to within ±2% of predicted values over the range 0–100%. Altogether, 396 measurements of proximal airway humidity and temperature were made in 14 infants. In 30 (8%) measurements the hygrometer registered values of relative humidity above 100%. This was attributed to condensation on the sensor after prolonged exposure to saturated gas rather than true supersaturation, which is rarely encountered with water heaters of the type used in this study. These measurements were recorded as 100% relative humidity. At constant temperature the correlation between proximal airway humidity and flow rate was inverse in infants managed with the Fisher Paykel systems

Table Relation between inadequate humidification in the proximal airway (<33 mg H₂O/l) and presence of dry expiratory tubing in 364 measurements

<table>
<thead>
<tr>
<th>Proximal airway humidity</th>
<th>Expiratory tubing (No (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet</td>
<td>Dry</td>
</tr>
<tr>
<td>≥33 mg H₂O/l</td>
<td>116 (47)</td>
</tr>
<tr>
<td><33 mg H₂O/l</td>
<td>131 (53)</td>
</tr>
<tr>
<td>Total</td>
<td>247</td>
</tr>
</tbody>
</table>

χ²=58, df=1, p<0.001.

(r=–0.89, p<0.01) but direct with the Bennett Cascade II system (r=0.96, p<0.001). Flow rates above 12 l/min were used on only 16 occasions.

Low values for proximal airway humidity [below the British Standard recommended minimum for inspired gas in adults of 33 mg H₂O/l]² were recorded on 251 (63%) occasions (Figure) and were more frequent when the expiratory tubing was dry than when it was wet (Table). With all humidifiers there was a direct correlation between temperature, measured by the hygrometer, and absolute humidity in the proximal airway (r=0.83, p<0.001). Only two measurements of proximal airway humidity throughout the study gave values above 40 mg H₂O/l.

Discussion

The electronic hygrometer is a simple and acceptable method of monitoring humidity in the proximal airway during intensive care. Its accuracy is comparable with that of mass spectrometry³ and of previous experience with electronic hygrometry.⁴

During spontaneous breathing gas inspired through mouth or nasopharynx reaches 37°C in the trachea. As it is fully saturated at this temperature it contains 44 mg H₂O/l. During mechanical ventilation the endotracheal tube bypasses the nasopharyngeal mucosa, making the infant entirely dependent on an external source of humidity. In addition, as saturated expired gas mixes with inspiratory gas the values for proximal airway humidity reported here probably overestimate the true humidity of the infants’ inspired gas. With the devices and settings used in this study, tracheal humidity is probably well below physiological levels. The Table indicates that wet expiratory tubing is no guarantee of adequate humidification, although dry expiratory tubing strongly suggests that humidification is inadequate.

The low range of proximal airway humidity documented here reflects the use of lower than physiological temperatures. In addition, the output
Intellect after malignancy

V TWADDLE, P G BRITTON, J KERNAHAN, AND A W CRAFT

Departments of Psychiatry and Child Health, Royal Victoria Infirmary, Newcastle upon Tyne

SUMMARY A previous study has shown that significant intellectual deficits exist in children treated for leukaemia but not in those with solid tumours. Unexpectedly, the deficits had not increased in the two years since the original study, suggesting that the nadir had already been reached five years after diagnosis.

The improving survival rates for children with cancer have led to a greater awareness of the side effects of treatment and their long term consequences. A study of intellectual function after treatment for leukaemia or solid tumours using sibling controls showed deficits in both groups, but these were consistently larger in the group with leukaemia. There was a suggestion that the deficits in children after treatment for leukaemia might be progressive, whereas for the other group they might be improving. This report details a further investigation of the same group of children two years after the initial assessment.

Method

Nineteen of the original group of 23 children with leukaemia (12 boys and seven girls) and 12 of the original group of 19 with solid tumours (eight boys and four girls) agreed to be restested with their siblings. Further details of the two groups are given in Table 1. Eleven of the patients with leukaemia and six of the patients with solid tumours were younger than their sibling.

Each child received the necessary four British ability scales according to their age. Thus all received the matrices test (abstract reasoning), the similarities test (verbal reasoning), and the recall of digits test (immediate memory). Those over 8 years had the speed of information processing test and