and anticonvulsants act synergistically and similarities between the fetal anticonvulsant and alcohol syndromes have been noted. Consequently, we wonder whether palatal function may be particularly susceptible to the teratogenic effects of alcohol or anticonvulsants, or both, and suggest that if such an effect were confirmed by others this would be a useful diagnostic pointer in these disorders.

I D Young and J R Moore
Leicester Royal Infirmary, Leicester

References

Clinical significance of gastro-oesophageal reflux

Sir,

Professor Carré is right to emphasise the frequency of unimportant gastro-oesophageal reflux in babies and children. It is possible to induce radiologically identifiable gastro-oesophageal reflux in almost any normal child. He is correct, therefore, in advising caution in attributing a whole gamut of symptoms to what may be a coincidental physiological event.

Unequivocal intrathoracic stomach is a rarity, and when it exists with reflux both are important and in need of management. Professor Carré states that the recognition of an intrathoracic stomach is all important and implies that in its absence reflux is of no significance. We would disagree with him on this. We have identified an intrathoracic stomach definitely in only four patients, and equivocally in a further one patient out of 18 who have needed recent fundoplication. In five patients there were severe strictures but in only one of these was there a partially intrathoracic stomach.

Eleven of the 18 patients had a funnel shaped gastro-oesophageal junction with no intra-abdominal oesophagus. This radiological sign may be important. From this sign some might infer that there is intrathoracic stomach mucosa and elevation of the lower oesophageal sphincter—as illustrated in Professor Carré’s Figs. 3 and 4. Failure of the oesophagus to empty itself of refluxed material may also be important. Funnel shaped gastro-oesophageal junction and persistence of refluxed material can be identified also in children whose vomiting resolves without developing severe complications of gastro-oesophageal reflux requiring surgery. They are not absolute signs of poor prognosis.

We suggest that there are factors other than a detected intrathoracic stomach which result in a poor prognosis for gastro-oesophageal reflux, and to try to identify these factors using new techniques is justifiable, and should be encouraged.

Reference

J F Ratcliffe, V Miller, and C Doig
Booth Hall Children’s Hospital, Blackley, Manchester M9 2AA

Ultrasound and the diagnosis of Wilms’ tumour

Sir,

We read with interest the paper on the usefulness of ultrasound in the management of abdominal malignancy by Kohler et al. They have assessed the performance of the ultrasound scan by calculation of its diagnostic accuracy and state that ultrasound is no more efficient than intravenous urography in the diagnosis of Wilms’ tumour and neuroblastoma. The efficiency of a test, however, is calculated in the following manner:

\[
\begin{array}{ccc}
\text{Patients with a positive ultrasound scan for Wilms’ tumour} & \text{Patients with a negative ultrasound scan for Wilms’ tumour} & \text{Total} \\
\hline
\text{Patients with Wilms’ tumour} & 36 (TP) & 5 (FN) & 41 \\
\text{Patients without Wilms’ tumour} & 6 (FP) & 56 (TN) & 62 \\
\hline
\text{Total} & 42 & 61 & 103
\end{array}
\]

TP=true positive; FN=true negative; FP=false positive; FN=false negative.

The efficiency of any diagnostic test is the percentage of all results which are true results, whether positive or negative, and may be obtained by adding the number of true positive results to the number of true negatives and dividing by the total number of subjects tested. The diagnostic efficiency of ultrasound for Wilms’ tumour in the study population is, therefore, 36 + 56/103 = 89.3%.

The authors are not justified in stating that ultrasound is no more efficient than intravenous urography in the diagnosis of Wilms’ tumour and neuroblastoma without such efficiency calculations.

Similarly, the term diagnostic sensitivity has been used in a loose sense. The sensitivity of any diagnostic test is the percentage of true positive results obtained when a test is applied to patients known to have the disease and is obtained by dividing the number of true positive results by the total number of true positive and false negative results. For example, the diagnostic sensitivity of ultrasound for Wilms’ tumour in the study population is 36/41 = 87.8%.

In their paper the authors have equated diagnostic sensitivity with diagnostic accuracy which is not the case. The terms diagnostic accuracy, diagnostic sensitivity, and
efficiency have precise scientific meanings and should be used correctly.

References

N J MATHERS AND R D G MILNER
University of Sheffield, Sheffield S10 2TH

Drs Kohler and Pritchard comment:
Mathers and Milner are correct to point out that the term diagnostic accuracy has been used loosely in this paper. We found that it became very confusing to try to present false positive and false negative data for each type of tumour for each preoperative diagnostic method; Table 2 in our paper evolved as a comprehensible compromise.

We have, however, calculated the diagnostic efficiency of ultrasound for neuroblastoma to be 87.4% (and for Wilms' tumour to be 89.3% as shown above). The diagnostic efficiency for intravenous urography for neuroblastoma and Wilms' tumour was 86.2% and 89.4% respectively. This confirms our statement that ultrasound was no more efficient than intravenous urography in the diagnosis of these two tumours.

We used the term diagnostic sensitivity only once when quoting directly from a paper which specifically used this term.

Intensive care and neonatal mortality

Sir,
Professor Yu and co-workers comment:
Dr Reynolds has pointed out, quite rightly, that it is important to quantitate the intensity and duration of neonatal intensive care that very low birthweight infants receive during their initial hospital admission, and to correlate these factors with their survival and quality of survival.

In the same four year cohort of very low birthweight infants described in the late mortality study, 66% required assisted ventilation for a median of five days (range 1-80 days) and 55% required parenteral nutrition for a median of nine days (range 1-60 days). We have also correlated a range of perinatal events experienced by very low birthweight infants including early morbidity factors and details of therapeutic intervention, with hospital survival and quality of survival.

Other markers of the 'extent of intensive care required' referred to by Dr Reynolds are the durations of intensive care and total time spent in hospital. The mean length of stay in the respirator section of the neonatal intensive care unit for the four year very low birthweight cohort was 30 days, in hospital survivors. Their mean length of total hospital stay was 70 days (gestation at discharge was mean (SD) 40.2 weeks, (4-2)). Thirty five per cent of the survivors in this four year cohort were discharged after 40 weeks' gestation. The infant mortality after discharge (5.8%) was significantly higher than that in infants who were discharged before 40 weeks' gestation (1.1%). Major disability defined as cerebral palsy, developmental delay (mental developmental index on the Bayley sales more than 2 SD below the mean), blindness, sensorineural deafness, epilepsy, and hydrocephalus were significantly more common in survivors with prolonged hospital stay compared with the remaining survivors (27% v 4%).

References