Re-evaluation of saliva for monitoring theophylline concentrations

G W RYLANCE, D T BESWICK, R E CULLEN, AND D G V ROBERTS
Children’s Hospital, Ladywood Middleway, Birmingham

SUMMARY Variability of the mixed saliva/plasma theophylline relation was examined in seven children aged 2 to 13 years. Good correlation between plasma and saliva concentrations was found, but on the three occasions there was considerable intersubject and intrapatient variability. There was no significant or consistent relation between unstimulated and stimulated saliva concentrations or between saliva concentrations and sample volumes. Plasma theophylline concentrations cannot be predicted accurately from saliva values.

Theophylline is an effective bronchodilator for both acute medical treatment and prophylaxis of asthma. Bronchodilator effect and toxicity are closely related to plasma concentration, and optimum treatment in adults is usually achieved when the plasma theophylline concentration is maintained within the range 10 to 20 mg/l (55 to 110 μmol/l).¹ This therapeutic range has not been confirmed in children, although decreased symptoms have been noted in a group of children when concentrations averaged 13 mg/l (67 μmol/l) compared with a mean value below 10 mg/l.²

There are large intersubject differences in theophylline pharmacokinetics in children. Plasma theophylline concentrations need to be monitored, therefore, in order to establish the dose required to achieve concentrations within the therapeutic range, which, it is assumed, is equally applicable to children.

Saliva sampling is used to monitor drug concentrations of some anticonvulsants,³ and its use to monitor theophylline has been suggested.⁴ ⁵ The evidence in the published reports, however, does not always support this view.⁶ ⁷ This study aimed to examine the validity of using saliva for monitoring theophylline by examining the effects on the saliva/plasma theophylline ratio of certain factors known to affect the saliva/plasma relation of drugs generally.

METHODS

Seven children aged 2 to 13 years were included in the study, which had been approved by our local research ethical committee: informed parental consent was obtained. None of the children had liver or kidney disease, and none were receiving drugs known to affect theophylline disposition. No attempt was made to minimise dietary xanthines on the day before or during the study periods.

Each child was studied on three separate occasions. Firstly, after a constant rate infusion into a peripheral vein of approximately 3-5 mg/kg aminophylline (79% theophylline, 21% ethylene diamine) over 20 minutes. Two saliva samples (one unstimulated, one stimulated by citric acid crystals) and a venous blood sample (1 ml – via an indwelling heparinised catheter) were obtained before and at hourly intervals for 10 hours after completion of the infusion. Saliva samples were collected in children aged under 4 years by a mucus extractor, and older children were asked to spit into a container until approximately 2 to 4 ml of mixed saliva was collected. Thorough mouth washing took place before and after each sampling.

The children were then studied on two subsequent occasions during regular, oral sustained release aminophylline or theophylline treatment given in equal 12 hourly doses at 8 am and 8 pm. Six children received Phyllocontin (Napp Laboratories) and one received Theo Dur (Fisons). Each study was within two weeks and after at least five days of the preceding study, and on each occasion hourly samples (two saliva, one blood as above) were collected between morning and evening doses. The weight related dose increased with time and was different on each occasion within each individual.

The volumes of the saliva samples were measured and the samples centrifuged and stored at −20°C until assayed for theophylline (EMIT (Syva)). The lower limit of the assay was 1-0 mg/l (5-5 μmol/l). The within run and between run coefficients of
Saliva has been substituted for plasma in the therapeutic monitoring and in pharmacokinetic studies of aminophylline. It has been suggested that saliva and plasma concentration can be used for monitoring theophylline.
itself be stimulatory, and repeat specimens, albeit unstimulated, collected before stimulated ones may by Pavlovian effect be representative of stimulated saliva. The effect of pH, reported to be negligible by Levy et al. was not considered in this study, and the lack of pH effect has recently been confirmed by Knott et al. The mean saliva/plasma ratio in all samples in this study (0.49) was similar to that found by other authors, and the highly significant correlation coefficient of 0.79 (P<0.001) between all samples of saliva and plasma seems to suggest that substitution of saliva for plasma may be reasonable. The wide inter- and intrasubject variation, however, in the saliva/plasma ratio, unaccounted for by the type of sample collection, volume, or whether the timing follows single dose or represents steady state, proves otherwise.

Although standardisation within a centre, expertise in collection, and great attention to mouth hygiene and cleansing may be expected to reduce the saliva/plasma variation, one of us (GWR) now has personal experience of collecting over 2000 saliva specimens of different type, and, in spite of a consistent thorough approach, the wide variation is evident in this study.

Variation in plasma protein binding may account for some variation in free fraction and hence the saliva/plasma ratio, but our within patient values are of such magnitude as to almost discount this explanation.

There is no available information on the direct relation between saliva theophylline concentrations and clinical effect. No therapeutic range for saliva theophylline concentration has therefore been determined. In practice saliva concentrations have been used by clinicians as an indirect measure of the plasma drug concentration using the plasma therapeutic range proportionately changed according to an assumed consistent saliva/plasma concentration ratio. These results show that the use of saliva as an indirect means of monitoring plasma theophylline concentrations in children and so forming a basis for dose modification should not become routine practice as the predictive error for plasma concentration is greater than 2 mg/l in over half the samples. In the search for an accurate non-invasive alternative to plasma concentrations it will be necessary to determine the relation between the concentrations in the medium used and to devise an optimum therapeutic range for that medium. We question whether the use of mucous extractors, citric acid crystals, and repeated saliva sampling might not prove as invasive as the use of plasma. For repeated sampling, as in kinetic studies, six of our seven patients (those 4 years and over) would prefer the placement of an indwelling intravenous cannula with subsequent drawing of samples through it, to that of repeated saliva stimulation and collection as described here—provided that only one intravenous access is required!

References

Correspondence to Dr G W Rylance, Children's Hospital, Birmingham B16 8ET.

Received 30 July 1984

Table 2 Relation between saliva type and plasma concentration and the error in predicting plasma concentrations from saliva

<table>
<thead>
<tr>
<th>Sample</th>
<th>No of samples</th>
<th>Correlation coefficient r</th>
<th>P value</th>
<th>Error in predicting plasma concentration (as % of all predictions)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤1 mg/l</td>
</tr>
<tr>
<td>Unstimulated</td>
<td>99</td>
<td>0.76</td>
<td><0.001</td>
<td>17</td>
</tr>
<tr>
<td>Stimulated</td>
<td>125</td>
<td>0.84</td>
<td><0.001</td>
<td>23</td>
</tr>
<tr>
<td>All saliva</td>
<td>224</td>
<td>0.79</td>
<td><0.001</td>
<td>16</td>
</tr>
</tbody>
</table>

\(r = \) Concentration of sample type.

Conversion—traditional units to SI: theophylline 1 mg/l = 5.56 μmol/l.

Notes: