Reappraisal of the chloride plate test as screening test for cystic fibrosis

HARRY SWACHMAN AND ABBAS MAHMOODIAN

Children's Hospital Medical Center, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA

SUMMARY A rapid and simple screening test for detecting cystic fibrosis, described in 1956, has been used routinely for 21 years; the results during a 15-month period are compared with those using the quantitative pilocarpine iontophoresis sweat test. In the chloride agar plate test the concentration of chloride on the finger tips is evaluated according to the intensity of the imprint. Readings of 2+ or less excluded cystic fibrosis in 1589 cases with only two doubtful instances, whereas 4+ readings were recorded in 198 cases of cystic fibrosis and 3+ readings in 15 cases of cystic fibrosis. In doubtful cases 4 individuals had 4+ readings and 11 had 3+ readings. This screening test does not replace the quantitative pilocarpine iontophoresis test but it does identify an individual who is likely to have the disease and who requires further tests. It is not reliable for infants aged under 2 months.

The diagnosis of cystic fibrosis (CF) is based on the accurate determination of sweat electrolytes under standard conditions in patients with clinical features of the disease. The quantitative pilocarpine iontophoresis (QPI) technique of Gibson and Cooke is the recommended sweat test procedure. The purpose of this paper is to report our experience with a simple screening test first described in 1956. It seems appropriate to reappraise the procedure after 22 years of daily use. This screening test is not meant to replace the quantitative analysis but it can identify an individual who is likely to have the disease. If a screening test is to be of use it should have a high degree of specificity and sensitivity, it should be inexpensive, require little time, and be simple. The chloride plate test fulfills these criteria.

Since the report of Shwachman and Gahm we have modified the readings by grouping them into four categories, rather than three, in an attempt to have a better refinement of the interpretation. Each year for the last 20 we have performed about 1200 QPI sweat tests. We specify the amount of sweat collected and the concentration of sodium, potassium, and chloride in mEq/l/(mmol/l). The chloride plate test was used as well. (Others have modified the original method by using impregnated filter paper in place of the agar plate.)

The fingertips are applied for about 2 seconds with very light pressure, and the imprint is noted immediately. The intensity of the white imprint against the dark background is a reflection of the amount of chloride on the skin. The entire hand or foot of an infant can be imprinted. Fig. 1 shows the various grades, progressing from a 1+ reading on the left to a 4+ reading on the right.

A healthy infant under 8 weeks of age generally does not leave an imprint. Thus, if a 2-week-old infant gave a 1+ or 2+ reading, this would be a significant observation since most healthy babies of this age would leave no marks. Some healthy adults may give 3+ readings. The concentration of chloride on the fingertips does not parallel that on the body. Stress or emotional stimulation increases the sweat rate and electrolyte concentration on hands, but not on the body. Evaporation of water also increases the concentration. Some conditions may distort the true reading—for example, the child sucking his fingers before the test may remove the chloride, as does the child who washes his hands, or goes to the fountain for a drink. A false-positive test may result if the child has eaten salted peanuts or dipped his hands in salted foods. The temperature of the air should also be considered. A child entering the room from the cold outdoors may require a 30-minute warm-up period before testing. It is prudent to watch the patient for at least 20 minutes before performing the test. It takes about 20 minutes for the sweat to reaccumulate should one wish to repeat the test, after washing the hands. Should the reading be equivocal the test can be repeated on the same day or later. If in doubt, or if the test gives a positive result the standard QPI sweat test should be done.
MacFarlane et al.7 tested our method; 54 patients with known CF gave a 3+ reaction, and after washing the hands and waiting a full 20 minutes all patients still gave a 3+ reaction. In a series of about 200 'normal' children of the same age group tested as controls, no false-positives were encountered. MacFarlane et al.7 found a 3+ reaction as early as age 4 weeks in an infant known to have CF.

Catzel9 tested 230 patients between 3 months and 12 years of age and found no false-positives. This group included 17 children with kwashiorkor of whom only 2 gave 2+ reactions. He confirmed that if the hands are washed and dried a period of 20 minutes is needed before the test can be reliably repeated. Geissler8 found 10 positive reactions, 9 in patients with confirmed CF, out of 300 experiments with the finger-print test. In the tenth case the patient had bronchiectasis with increased sweat electrolytes and normally functioning pancreas, and Geissler considered that the patient had partial pancreatic fibrosis. She considered the test accurate and recommended its use. Vavrova10 also confirmed the value of the test as he did, too, of a spot test described by Shwachman and Antonowicz.11

It is clear that the chloride plate test cannot be used as a screening test in the newborn period.

We have previously suggested that meconium should be tested for albumin13 as a screening test in the neonate, and this led to the development of a paper strip test;13 however this test was not recommended by the Cystic Fibrosis Foundation as a test to be used routinely, as a result of a collaborative study.14 We have now developed a new approach to screening the newborn based on the increased viscosity of meconium (L Kopito and H Shwachman, personal communication).

Results

Over a 15-month period a total of 1896 chloride plate tests were performed at the same time as a QPI test. All patients were referred for diagnostic purposes. We felt that this sample number of tests (approximately 10% of our data) would suffice to demonstrate the value of this method of screening. Patients with CF, and some doubtful cases, were tested twice with few exceptions. The age range of these patients was 2 days to 60 years, with 90% of tests on patients under 25 years of age. There was an equal sex distribution. 48 tests performed on babies under 2 months are not shown in the Table, since none left a visible imprint not even 2 infants with CF aged 28 and 30 days (Table and Fig. 2). All 48 infants were success-

<table>
<thead>
<tr>
<th>Reading</th>
<th>Cystic fibrosis</th>
<th>Borderline or doubtful</th>
</tr>
</thead>
<tbody>
<tr>
<td>4+</td>
<td>198</td>
<td>0</td>
</tr>
<tr>
<td>3+</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>2+ or less</td>
<td>0</td>
<td>1589</td>
</tr>
</tbody>
</table>

Fig. 1 Chloride plate imprints. Readings from left to right, grade 1+ to grade 4+. On the bottom right is a foot imprint of a 10-week-old baby with cystic fibrosis (sweat chloride was 74-0 mmol/l).

Fig. 2 Chloride values (mEq/l/mmol/l) obtained by the QPI method compared with the readings made by the chloride plate method.
fully sweat tested by the QPI method. However, one
8-week-old baby with CF gave a 3+ reaction and
another at 10 weeks gave a 4+ reading. One infant
with CF at 8 days gave a 2+ reading and the quantita-
tive sweat test was 70 mmol/l for chloride.

Of the 957 patients who gave a 1+ reaction, the
chloride concentration by the QPI technique was
<60 mmol/l in all cases (Fig. 2). Of the 632 indivi-
duals with a 2+ reaction only two values were in the
lower CF range. These two readings were made on
one patient who did not have sufficient clinical
evidence for the diagnosis of CF.

57 reactions on the chloride plate were 3+. Of
these, 31 were not from patients with CF. 11 were
from patients in whom the diagnosis was question-
ated and whose chloride values by the QPI method were
between 55 and 70 mmol/l. 15 reactions of 3+ were
from 15 patients with CF.

Of the 4+ reactions, all but 4 were made by patients
with fully established CF. These 4 exceptions were
patients with typical pulmonary manifestations of
CF, normal pancreatic function, and borderline
values by the QPI method on more than three separate
occasions. We consider they have CF but that it is
not fully expressed.15-16

Conclusions

(1) The chloride agar plate gave a reading of 2+
or less in 1589 tests on patients who did not have CF
determined by clinical and by a QPI sweat test.
Certain precautions in the performance of the test
have been given.
(2) All patients with proved CF gave a 3+ or 4+
reaction.
(3) The test has limited value in babies under 2
months of age.
(4) The test is simple, instantaneous, and inexpensive
with sensitivity of 100% and specificity of over 95%.
(5) This screening test does not replace any of the
sound techniques of quantitating the concentration of
sodium and chloride.
(6) All patients in whom the diagnosis of CF is made
should have at least two separate QPI sweat tests.

Appendix

The plates are currently made up as follows:

One litre will yield 60 plates. The ingredients are:
6 g silver nitrate, 3 g potassium chromate, and 60 g
agar.

The chemicals in solution are gradually added to
the heated agar in solution while stirring to a final
volume of 1 litre with water. The plates are poured
while hot. After reaching room temperature they are
placed inverted in the refrigerator where they are
stored until needed. The life of a plate is about 8
weeks since they tend to dry out with storage.

This study was partly supported by the Ina Sue
Perlmutt Fund, the Jeffrey Moss Fund for the
Study of Cystic Fibrosis, and the Cystic Fibrosis
Foundation.

References

1 Gibson L E, Cooke R E. Guide to diagnosis and manage-
ment. Maryland: National Cystic Fibrosis Research
2 Shwachman H, Gahm N. Studies in cystic fibrosis of the
pancreas. A simple test for the detection of excess chloride
3 Shwachman H, Mahoodian A. Pilocarpine iontophoresis
sweat testing. Results of seven years’ experience. Mod
4 Takahashi Y, Wada M. The permanent recording of
sweat by plastic impression. J Invest Dermatol 1962; 38:
197–8.
5 Fortina A. Modified Shwachman test for the diagnosis of
mucoviscidosis (in Italian). Minerva Pediatr 1961; 13:
1286–7.
6 Knights E M, Jr, Brush J S, Schroeder J. Simplified
screening test for detecting cystic fibrosis of the pancreas.
7 MacFarlane J C W, Norman A P, Stroud C E. Finger-
print sweat test in fibrocystic disease of pancreas. Br Med
9 Geissler J. On experiences with the finger-print test in
pancreatic fibrosis (in German). Munch Med Wochenschr
1959; 101: 1978–82.
10 Vavrova V. The imprint test in screening for mucovis-
cidosis (in Czechoslovakian). Cesk Pediatr 1965; 20:
16–22.
11 Shwachman H, Antonowicz I. Problems in cystic fibrosis.
The sweat test in cystic fibrosis. Ann NY Acad Sci 1962;
12 Green M N, Shwachman H. Presumptive test for cystic
fibrosis based on serum protein in meconium. Pediatrics
13 Stephan U, Busch E W, Kollberg H, Hellising K. Cystic
fibrosis determination by means of a test strip. Pediatrics
14 Holsclaw D, Keith H, Palmer J. Meconium screening for
15 Shwachman H, Goodchild M C, Khaw K T, Kopito L,
Mahoodian A. Incomplete expression of cystic fibrosis
abstract). Rockville, Maryland: National Cystic Fibrosis
Research Foundation, 1966.
16 Sterin R C, Boat T F, Abramowsky C R, Matthews L W,
Wood R E, Doershuk C F. Intermediate-range sweat
chloride concentration and Pseudomonas bronchitis.

Correspondence to Dr Harry Shwachman, Children’s
Hospital Medical Center, 300 Longwood Avenue,
Boston, Massachusetts 02115, USA.

Received 25 September 1979