Individualised continuous distending pressure applied within 6 hours of delivery in infants with respiratory distress syndrome

A KEITH TANSWELL, RICHARD A CLUDBB, BARRY T SMITH, AND R WESLEY BOSTON

Neonatal Intensive Care Unit, Kingston General Hospital, and Department of Paediatrics, Queen's University, Kingston, Ontario, Canada

SUMMARY A preliminary study was performed in which a simple clinical technique for estimating appropriate levels of continuous distending pressure (CDP) in infants with respiratory distress syndrome (RDS) was used to compare two groups of infants; one group had CDP started very early in life (3.1 ± 0.3 hours) while in the other treatment was started at a more conventional age (23 ± 5.4 hours). Appropriate CDP was identified as the point at which transpulmonary transmission of airways pressure to the oesophagus was seen suddenly to increase, while serial measurements allowed CDP levels to be instituted and varied according to physiological signs during the course of each infant's disease. Oxygen requirements fell to <35% more rapidly in the early-treated group (10.6 ± 1.2 v. 67.4 ± 5.6 hours; P<0.001), as did the requirement for a CDP >4 cmH₂O (28.9 ± 5.3 v. 87.6 ± 14.2 hours; P<0.001). Better (P<0.01) values for pH, Paco₂, and A-aDO₂ were observed in the early-treated group. We believe that the use of this simple technique has numerous advantages and that very early introduction of CDP can be realised in a manner selective enough for it only to be used in those infants in whom intervention is justified.

A report by Gregory et al.¹ led to widespread use of continuous distending pressure (CDP) in the management of the respiratory distress syndrome (RDS). Most studies have shown its use to be associated with improvement of arterial oxygenation, reduced severity of disease, and lessened exposure to high oxygen concentrations. There have been few large and controlled trials of CDP, and advances in sick infant care have led to reductions in mortality from RDS,⁴ making it difficult to assess the contribution of any one component in management.³ Roberton,⁴ in a review of reports, was unable to find unquestionable evidence of an effect on survival of infants with RDS as a result of treatment with CDP. If CDP is to have a beneficial effect on mortality it seems likely that application earlier in the disease is required⁵ ⁶ ⁷ but at a pressure low enough to avoid complications. Allen et al.⁸ combined their data with those from similar studies and demonstrated an improvement in mortality by the earlier use of CDP.

While the earlier use of CDP is desirable, the associated morbidity prohibits over-liberal use.⁹ If an acceptable risk/benefit ratio is to be preserved it is essential to select only those infants in whom its use would be beneficial, and subsequently to titrate CDP according to the infant's changing needs.

This paper reports our early experience with a simple clinical technique which we believe allows these criteria to be fulfilled.

Patients and methods

After the initial report of a simple method for measuring 'optimal' continuous distending pressure¹⁰ we applied the technique, later described in greater detail,¹¹ to the first 9 premature infants that became available for study which had RDS (Table 1) according to our modification¹² of the criteria of Baden et al.¹³ These 9 infants are called the late-treated group. A fluid-filled No. 5 FG feeding tube with an end hole was passed through one nostril into the stomach, and attached to a microdot

Department of Paediatrics, Queen's University, Kingston, Ontario
A K TANSWELL, assistant professor of paediatrics
R A CLUDBB, neonatal fellow
B T SMITH, associate professor of paediatrics
R W BOSTON, professor of paediatrics
transducer. Pressure fluctuations with respiration were displayed visually and graphically, and the catheter withdrawn until the wave-form changed to an oesophageal pattern, establishing that the catheter tip was in the lower third of the oesophagus. Nasal CDP was applied through a shortened nasotracheal tube inserted through the other nostril into the posterior naopharynx, and the applied pressure increased from zero in 2 cmH₂O increments. Optimal CDP (OCDP) was defined as the least pressure at which increased transpulmonary transmission of the applied pressure could be detected by a shift of the recorded wave pattern (Fig. 1). As this study was designed to test the applicability of a simple clinical tool, actual measurement of oesophageal pressures was not performed, nor was it necessary to identify the changes sought. This procedure was repeated at frequent intervals, and the pressure at which a wave-form shift occurred was maintained until the next OCDP estimation. There were no difficulties in identifying the point at which shift occurred. In the smallest infants this shift was small but clearly defined and reproducible. We observed no wave-form shift below OCDP and no further upwards shift above OCDP. Occasionally measurement was deferred if an infant was too active, but this was not a problem. Between estimations the feeding tube was repositioned in the stomach and left open to prevent gastric distension from nasal CDP. The tube was flushed with a small volume of saline before the next recording, and replaced if wave damping occurred. In this late-treated group 5 infants were receiving conventional CDP, at pressures below OCDP, at the time OCDP was first measured.

Having found that this technique was simple and clinically applicable, we measured OCDP within 6 hours of delivery in the next 17 infants that became available for study; we believed these babies would develop significant RDS (Table 1, early-treated group). All infants had a negative gastric aspirate shake test, which we found in a large group of premature infants indicated a 66% chance of developing RDS and a 100% chance of developing respiratory symptoms, and an x-ray pattern compatible with RDS. With both these criteria satisfied, an umbilical artery catheter was inserted and a ‘hyperoxia test’ performed in 100% oxygen, unless the fractional inspiratory oxygen (FIO₂) concentration was already

Table 1 Criteria used to determine the two study groups

<table>
<thead>
<tr>
<th>Late-treated group</th>
<th>Early-treated group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Negative gastric aspirate shake test</td>
<td>1. Negative gastric aspirate shake test</td>
</tr>
<tr>
<td>2. At least 5 of the following criteria with disease progression</td>
<td>2. Chest x-ray compatible RDS</td>
</tr>
<tr>
<td>at 24 hours of age,*</td>
<td>3. A-aO₂ in hyperoxia test</td>
</tr>
<tr>
<td>Respiratory rate > 60/min</td>
<td>> 525 mmHg or P₉O₂ > 0.75</td>
</tr>
<tr>
<td>Intercostal recession and/or substernal retraction</td>
<td>4. Clinical signs compatible</td>
</tr>
<tr>
<td>Grunting</td>
<td>with RDS</td>
</tr>
<tr>
<td>Recorded PaO₂ < 60 mmHg</td>
<td>5. OCDP > 4 cmH₂O</td>
</tr>
<tr>
<td>Recorded PaCO₂ > 50 mmHg</td>
<td></td>
</tr>
<tr>
<td>Chest x-ray compatible with RDS</td>
<td></td>
</tr>
<tr>
<td>Cyanosis in room air</td>
<td></td>
</tr>
</tbody>
</table>

*From Baden et al.¹³

![Fig. 1 Oesophageal pressure (Pes) wave-forms observed over a range of distending pressures in one infant at 3, 12, and 18 hours of age. The pressure at which wave-form shift occurred (OCDP) is indicated, and is seen to fall with resolution of RDS.](image-url)
Individualised continuous distending pressure

>0.75. All 17 infants had either an F₁O₂ >0.75 or an alveolar-arterial oxygen pressure difference (A-aDo₂) >525 mmHg and, having clinical signs compatible with RDS, had OCDP estimations performed. In only 13 infants (subsequently called the early-treated group) in whom the initial OCDP value was >4 cmH₂O, was OCDP maintained, since we felt that a lesser value reflected absent or mild disease. Of the 4 infants excluded by this last criterion one developed RDS, one transient tachypnoea, one congenital heart disease, and the other had early group B β-haemolytic streptococcal infection.

Blood-gas analyses were performed after the institution of OCDP, and thereafter as clinically indicated. Aortic blood pressure (BP) was recorded without CDP, at OCDP, and hourly during the course of treatment. Subsequent retrospective analysis of the case notes was performed to record serial changes in arterial oxygen tension (Pao₂), pH, F₁O₂, and A-aDo₂. In this analysis we elected to examine the data in the time frames 0–6, 7–12, 13–24, 25–48, and 49–72 hours of age. Results were not available for every infant in every time frame, and if more than one result was available for a single infant in a time frame the mean value for these results was used in analysis. Calculations for F₁O₂ in each time frame were made from the case notes record of oxygen concentrations rather than from the F₁O₂ values noted at the time blood-gases were taken. A mean and standard error was calculated for each group in each time frame (Fig. 2) and the results compared.

The A-aDo₂ was calculated according to the formula:

\[\text{A-aDo₂} = \text{F₁O₂}(\text{AP-WVP}) - (\text{Paco₂} + \text{Pao₂}) \]

where AP is the atmospheric pressure and WVP is water vapour pressure. All measurements were expressed as mmHg. If CDP was being applied, the CDP (in mmHg) was added to AP.

Comparisons were made between the two groups using Student's t test. Three infants died and were included in the study until acute deterioration, at which point they received terminal positive pressure ventilation.

Results

OCDP was applied very early in life [means ± SE] (3.1 ± 0.3 hours) to 13 patients and at a more conventional time (23.5 ± 4 hours) to 9 others. Table 2 compares several parameters in our two

Fig. 2 Results of serial blood-gas analyses (means ± SE) are compared for early-treated and late-treated groups (see text). Only statistical differences with P values <0.01 or <0.001 are shown, less statistically significant differences being given in the text. The number of infants included for each group for each time frame is shown in the Pao₂ graph.
groups. No significant differences were observed in birthweights \((t=1.92; \text{df}=20; \text{P}=\text{NS})\), gestational age \((t=1.32; \text{df}=20; \text{P}=\text{NS})\), or Apgar score \((t=0.31; \text{df}=20; \text{P}=\text{NS})\). All birthweights were appropriate for gestational age,\(^{16}\) which was confirmed by postnatal assessment.\(^{17}\) ‘Hyperoxia test’ results were available from 7 late-treated and 10 early-treated infants before the onset of OCDP; these were not significantly different \((t=1.31; \text{df}=15; \text{P}=\text{NS})\). The initial pressures required to achieve OCDP, while not significantly different for the two groups \((t=1.78; \text{df}=20; \text{P}=\text{NS})\), were slightly higher in the late-treated group, compatible with a later stage of the disease process at the time OCDP was started. A more rapid recovery in the early-treated infants is demonstrated by the more rapid fall in oxygen requirements to an \(F_{\text{O}_2}<0.35\) \((t=19.49; \text{df}=17; \text{P}<0.001)\) and in the time taken for OCDP to fall below 5 \text{cmH}_2\text{O} \((t=4.36; \text{df}=17; \text{P}<0.001)\). In the early-treated group chest x-rays showed rapid improvement after initiation of OCDP, while any radiological improvement in the late-treated group was slow to develop. Our aim was to maintain \(Pao_2\) values between 50 and 80 mmHg in all infants, but we failed to achieve this in the rapidly improving early-treated group, as is evident from

Table 2 Comparison of several parameters between groups early- and late-treated with OCDP

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Late-onset OCDP</th>
<th>Early-onset OCDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry into study (hours)</td>
<td>(23 \pm 5.4)</td>
<td>(3.1 \pm 0.3^*)</td>
</tr>
<tr>
<td>Birthweight (g)</td>
<td>(1996 \pm 206)</td>
<td>(1552 \pm 130)</td>
</tr>
<tr>
<td>Gestational age (weeks)</td>
<td>(32.6 \pm 1.1)</td>
<td>(31.1 \pm 0.6)</td>
</tr>
<tr>
<td>3-minute Apgar score</td>
<td>(7.6 \pm 0.5)</td>
<td>(7.3 \pm 0.6)</td>
</tr>
<tr>
<td>(A-aDo_2) in (100% \text{O}_2) (mmHg)</td>
<td>(649 \pm 10)</td>
<td>(663 \pm 5)</td>
</tr>
<tr>
<td>Initial OCDP (cmH(_2)O)</td>
<td>(10.9 \pm 1)</td>
<td>(8.4 \pm 0.9)</td>
</tr>
<tr>
<td>(F_{\text{O}_2} >0.35) (hours)</td>
<td>(97.4 \pm 14.2)</td>
<td>(10.6 \pm 1.2^*)</td>
</tr>
<tr>
<td>OCDP >4 cmH(_2)O (hours)</td>
<td>(28.9 \pm 5.3^*)</td>
<td>(28.9 \pm 5.3^*)</td>
</tr>
</tbody>
</table>

*P<0.001
Fig. 2. Differences were significant in the time frames 0–6 hours \((t=2.18; \ df=14; \ P<0.05) \), 7–12 hours \((t=2.10; \ df=18; \ P<0.05) \), and 25–48 hours \((t=2.93; \ df=13; \ P<0.02) \). Paco\(_2\) was at a lower level in the early-treated group, which achieved significance at 7–12 hours \((t=3.01; \ df=18; \ P<0.01) \), 13–24 hours \((t=3.18; \ df=15; \ P<0.001) \), and at 25–48 hours \((t=2.65; \ df=13; \ P<0.02) \). The pH was higher in the early-treated group being significant from 0–6 hours \((t=2.97; \ df=14; \ P<0.02) \), 7–12 hours \((t=2.43; \ df=18; \ P<0.05) \), 13–24 hours \((t=5.44; \ df=15; \ P<0.001) \), and 25–48 hours \((t=2.87; \ df=13; \ P<0.02) \). Oxygen requirements showed no difference in the first 6 hours of life, but thereafter there were pronounced differences at 7–12 hours \((t=3.73; \ df=18; \ P<0.01) \), 13–24 hours \((t=7.37; \ df=15; \ P<0.001) \), 25–48 hours \((t=7.61; \ df=13; \ P<0.001) \), and 49–72 hours \((t=4.81; \ df=9; \ P<0.001) \). Similarly for A-aDO\(_2\), no differences were seen in the first 6 hours, but these were pronounced from 7–12 hours \((t=3.6; \ df=18; \ P<0.01) \), 13–24 hours \((t=7.3; \ df=15; \ P<0.001) \), 25–48 hours \((t=8.09; \ df=13; \ P<0.001) \), and 49–72 hours \((t=3.9; \ df=9; \ P<0.01) \). The most visually evident difference between these two groups is in the A-aDO\(_2\), as seen in Fig. 3. Results before OCDP are omitted to prevent over-crowding.

There were 3 deaths in the total study group, one in the early-treated group and 2 in the late-treated one. In all 3 infants there was sudden deterioration with apnoea and circulatory disturbance and a rapid course to death despite positive pressure ventilation. All 3 had intraventricular haemorrhages identified at necropsy. No infant developed a pneumothorax while receiving OCDP, although one infant in the late-treated group had a draining pneumothorax at the initiation of OCDP.

In all cases when OCDP was determined, we observed that a reduction in BP was produced by increasing CDP 2–6 cmH\(_2\)O above OCDP. In 3 infants OCDP was reassessed in response to reductions of systolic BP by 10–20 mmHg. The BP in each infant returned to its original value on reduction of CDP to the re-estimated and lower OCDP. Two infants in the early-treated group were hypotensive when OCDP was first applied and became normotensive within a few minutes of OCDP application.

Discussion

The term optimal continuous distending pressure or OCDP has been used in this report in deference to Bonta et al.\(^1\) who coined the term in their report of the technique. While we are uncertain if our observations reflect a truly optimal level for CDP, we believe that there is good evidence that this technique offers a means of physiologically evaluating an appropriate level of CDP for each infant.

In infants with RDS only 20% transmission of airways pressure to the oesophagus was observed by Gregory et al.\(^1\) and 25–34% by Bancalari et al.\(^1\) Bonta et al.\(^1\) confirmed these findings but made the important observation that transmission increased to 64% at OCDP, and fell with any further increase in airways pressure. While there are no studies for infants with RDS in the very early hours of life, Suter et al.\(^1\) in adult patients with atelectatic lung disease, found that both under- and overinflation of the lungs can impair lung compliance, and reasoned that positive airways pressure can have both beneficial and detrimental effects as a function of recruiting atelectatic areas for gas exchange (beneficial) thereby increasing functional residual capacity (FRC), compliance, and arterial oxygen tension, or by overdistending alveoli (detrimental) which decreases compliance and eventually obstructs venous return and decreases cardiac output. The influence of CDP, therefore, depends on the balance between recruitment of atelectatic areas and overdistension of air sacs. Bonta et al.\(^1\) and ourselves, have observed that there is a sudden increase in transpulmonary transmission of airways pressure at OCDP in infants with RDS, suggesting that at this point the critical opening pressure of a large number of air sacs has been achieved; according to Suter et al.\(^1\) this would result in improved compliance and therefore an increased transmission of airways pressure to the oesophagus. The further observation that any increase in CDP above OCDP (as defined here) results in a fall in transmission, suggests that the balance has swung to overdistension of air sacs with a resultant impairment of compliance and reduced pressure transmission.

Our observation that OCDP occurs at successively lower pressures with time, indicates that the pressure necessary to keep the air sacs inflated decreases with improvement of the disease process, as would be expected. The extremely rapid rate of improvement in the early-treated group suggests that very early application of sufficient CDP to increase the FRC towards normal prevents surfactant destruction by a ventilatory pattern that allows low values for FRC at end-expiration.\(^2\)–\(^4\) Since surfactant probably has a half-life of the order of 15 hours\(^5\) and is already deficient in infants with RDS, any reduction of an enhanced rate of destruction would be beneficial. The better prevention of atelectasis in the early-treated rather than the late-treated group is reflected by the difference in A-aDO\(_2\) \(\times\) values, indicating less right-to-left shunting of blood with a more even distribution of pressure over a large number of air sacs. The slow
response in the late-treated group is compatible with
the findings of Bancalari et al.\(^7\) that application of CDP
to a group of infants with RDS at a mean age similar
to our late-treated group can reduce lung
collapse by predominantly hyperinflating open air
sacs rather than by reinflating atelectatic units. That
the inferior results of our late-treated group were
not simply due to inadequate CDP is suggested by the
fall in BP which occurred as pressure increased above
OCDP and prohibited any further increase. The
fall in \(\text{Paco}_2\) seen during the first 24 hours in
the early-treated group is contrary to the experience
of other investigators applying CDP later in life,\(^7\)
and suggests that the decreased saccular ventilation
observed in their late-studied infants was prevented
in our early-treated group.

Despite the use of very high initial pressures in
some early-treated infants we saw no pneumo-
thoraces, probably reflecting a more even distribution
of the pressure load without hyperinflation, and
a briefer total exposure to increased airway pressure.
In the combined study groups the mortality was
14%; the 3 infants who died weighed 900, 900, and
1650 g at birth. While the use of continuous positive
pressure with a neck seal has been incriminated in the
aetiology of intraventricular haemorrhage,\(^9\)
secondary to obstructed venous return to the
chest, our BP observations, used as an indirect
monitor of cardiac output, which in turn is directly
related to mean airways pressure,\(^8\) did not suggest
any such occurrence in these infants. Excessive
pressure can cause a pronounced increase in intra-
\(\text{Paco}_2\) and extrapulmonary\(^7\) right-to-left shunt, and a
reduction in cardiac output\(^\text{and}\) blood pressure.\(^1\)
The relationship between lung volume and pulmonary vascular resistance is a U-shaped curve with its nadir at normal FRC,\(^7\) which may partly
account for the rapid reduction in \(\text{A-aDo}_2\) seen only
in the early-treated group. It would appear that our
observations of a fall in blood pressure when
exceeding OCDP represents the ascending limb of the
U-shaped curve, while the two observations of
improved BP with introduction of OCDP could
represent a shift from the descending limb to the
nadir.

No completely satisfactory diagnostic criteria
exist for RDS, but most require that clinical and
biochemical deterioration continue at least beyond
the first 24 hours of life. Any therapeutic modality
which prevents the occurrence of these cardinal
signs makes comparison of treated and control
groups more difficult in terms of equating the initial
severity of their lung disease. In this preliminary study
we attempted to include only infants we believed
would develop severe RDS, this we did by using
exclusive entry criteria for the early-treated group. It
may be seen that a tendency to lower weights and
gestations in the early-treated group, and a
preponderance of males (84 v. 44\%) would also tend to
reduce the likelihood of early recovery in this group.

We believe that this preliminary study supports
the observations of Bonta et al.,\(^1\) and extends them
by showing that measurement of OCDP can not only
help to select infants in whom CDP is warranted
early in life, but can be used to identify appropriate
levels of OCDP in each patient throughout the disease
process. With this technique we have been able to
apply individualised CDP, with confidence, at a much
earlier age than in other studies, and demonstrate
a striking difference in the clinical course of such
infants. Larger numbers are required to demon-
strate any significant effect on mortality or morbidity,
and a clinical trial of this technique is currently in its
early stages.

We thank Dr K W Mackie for reviewing x-rays,
and Dr V Chernick, Dr J A Clements, and Dr H W
Taeusch for helpful comments.

This work was supported by a grant (MA 5757) from
the MRC of Canada.

A K T held fellowships from the Canadian Cystic
Fibrosis Foundation and the The William T
McEachern Foundation. B T S holds a scholarship
from the MRC of Canada.

References

Hamilton W K. Treatment of the idiopathic respiratory
distress syndrome with continuous positive airway
2. Robertson N R C, Tizard J P M. Prognosis for infants
with idiopathic respiratory distress syndrome. Br Med J
4. Robertson N R C. Management of neonatal respiratory
5. Chernick V. Continuous distending pressure in hyaline
6. Mockrin L D, Bancalari E H. Early versus delayed
initiation of continuous negative pressure in infants
7. Ahlström H, Jonson B, Svenningsen N W. Continuous
positive airway pressure treatment by face chamber in
idiopathic respiratory distress syndrome. Arch Dis Child
Wimberley P R. Controlled trial of continuous positive
airway pressure given by face mask for hyaline membrane
9. Stahiman JM T, Cotton R B. Letter: Commentary on early
versus late initiation of continuous negative pressure.
Individualised continuous distending pressure

Colgan F J, Barrow R E, Fanning G L. Constant positive-pressure breathing and cardiorespiratory function. Anesthesiology 1971; 34: 145–51.

Correspondence to Dr A K Tanswell, Department of Paediatrics, Queen’s University, Kingston, Ontario K7L 3N6, Canada.

Received 16 February 1979