Thermometers and rectal perforations in the neonate

Sir,
The traumatic origin of many 'spontaneous' perforations of the alimentary canal is worthwhile emphasising (Archives, 1978, 53, 824). Two similar patients were reported previously from Great Ormond Street (Young, 1965) and were described at the Royal Society of Medicine. In the discussion that followed an experienced paediatrician commented, 'This seems to explain the reason why I have intermittent bursts of infants with rectal bleeding as, on reflection, this seems to occur each time we have a new batch of nurses in the nursery'. The presumed cause of this bleeding was from mucosal tear caused by the passage of a thermometer to the rectum.

Perforation of the rectum by thermometers or tubes is more common than reports suggest. Stomach tubes can also be implicated as the cause of some of the 'spontaneous' perforations of that organ.

In an article (Young, 1965), the importance of instruction to nurses was emphasised: 'Instruction to nurses on the anatomy of the rectum must be clear, and to take a rectal temperature the thermometer should be inserted into the anal canal and then advanced at an angle of 30° backwards, not straight into the rectum parallel to the cot as one so often sees'.

In the editorial comment on Frank and Brown's paper (Archives, 1978, 53, 824) your experienced paediatricians give no reasons for the perpetuation of the widespread practice of taking temperatures per rectum. Could we have the reasons for continuing this, or a clear statement that it does not have inherent merit and does have a small but definite risk?

Estimation of gestational age at birth—comparison of two methods

Sir,
The Short Report by Serfontein and Jaroszwicz (Archives, 1978, 53, 509) in which the method of Robinson for estimating gestational age was compared with that of Dubowitz contains several errors in both methodology and inference.

After regressing the Robinson gestational age on that by the Dubowitz method they state that 'the 95% confidence interval for a single estimation of gestational age . . . is ± 1 week'. (It is curious that this figure is only given to one significant figure whereas the slope of their regression line has 3 and the intercept 7). Confidence intervals derived from regression lines are smallest at the mean of X and increase as X gets further from the mean. It is not possible to give a single figure, in this case ± 1 week, for the 95% confidence limits for a single estimation of gestational age. Furthermore, their figure of ± 1 week looks surprisingly small, even assuming it refers to the confidence limits at the mean. In any case, since the objective was to see if Robinson’s method could replace the Dubowitz method, the Dubowitz age should have been regressed on the Robinson age; that is, the regression should have been performed the other way round.

The authors state that the Robinson method compares 'very favourably' with the Dubowitz scoring system. This vague statement is presumably based on the observed correlation between the two sets of gestational ages of 0.85. A correlation of this magnitude means that one method explains less than three-quarters (0.85) of the variability of the other, which in this context is not especially good. They then say that 'both (methods) were found to be accurate between the ages of 29 and 37 weeks', and it is stated that all the mothers were reasonably sure of the dates of their last menstrual periods. However, definitions of 'accurate' and 'reasonably sure' are not given, and no comparison is presented between the 'true' gestational ages and those calculated by either of the two methods under discussion, so that the assertion about accuracy is unsupported.

A final criticism, concerning the design of their investigation, is that it appears that each assessment was carried out by a different person. If this is so, any inherent differences between the two observers are confounded with differences between the two methods, so that the two effects cannot be separated and it is impossible to make a true comparison.

The question which the authors should be asking is 'Do the two methods give comparable results?' and the
degree of comparability which is felt acceptable should be specified. If the answer is 'yes' then it would be reasonable to use the simpler Robinson method instead of the more complicated (but better validated) Dubowitz one. Correlation does not answer this question. We expect two measures of the same thing to be correlated; what we are really interested in is the difference between the gestational ages calculated by the two methods. The simplest approach is to calculate the mean and SD of the differences between the two ages. A paired t test can be used to test for any systematic difference between the two measures. A significant result looks likely in this case as most of the points in their figure are below the line of identity. From the SD a 95% confidence interval can be calculated. Alternatively, a regression of the Dubowitz age on the Robinson age could be carried out. Each age by the Dubowitz method could then be compared with its estimate, using the regression equation and the observed and estimated ages compared in the same way as before.

The authors have not established that the Robinson method is a good approximation to the Dubowitz system, and their assertions about the accuracy of the method are unsupported.

D. G. Altman
Clinical Research Centre,
Northwick Park,
Watford Road,
Harrow HA1 3UJ

Drs Serfontein and Jaroszewicz comment:
We thank Mr Altman for his interest in our paper, although the points he has raised, some of which are valid, are really minor ones and in no way affect the essence of the study.

Regarding the design of the investigation, at the start of the study a trial assessment was made by both of us in which each used the same method of assessment of gestational age on the same infant and no significant differences were disclosed. For the actual study it was felt that the fact assessments were made by two different observers (one doing only the Robinson technique and the other only the Dubowitz method) would result in greater objectivity. Independence of observation was ensured by the results of one examiner not being made known to the other.

With the term 'reasonably sure' it is meant that these were Cape Coloured mothers who could state definite dates of their last normal menstrual periods, had no bleeding within one month of those dates, and had regular menstrual cycles of 28 ± 2 days, the last period being normal in amount and duration. The first day of the last menstrual period (LMP) was used as the reference day and the expected date of delivery was calculated as 280 days (40 weeks) from that day.

Regarding the statistical model and analysis of our study we reiterate that the Robinson method for estimation of gestational age is only pertinent between 29 and 37 weeks' gestation and it is between these limits that we assessed its value against the Dubowitz method. For this reason a paired t test comparing the two methods is undesirable. Should one want to do so it would have to be by means of a 4-fold contingency table with age groupings according to both methods. In this way the same restrictions are imposed upon the Dubowitz method as upon the Robinson method. There is no significant difference between the two methods when compared in this manner.

With respect to the correlation, we should like to point out that a correlation of 0.85 significant at $P < 0.01$ suggests that there is one in 100 chance that this correlation is due to chance factors, i.e. reasons other than that warranted by actual strength of data. What this correlation means is that 67% of a rating on one scale is predicted by the ratings on the other scale, which is very high agreement considering other variables that might also influence the ratio. From any statistical view point this magnitude of correlation, which is also not due to chance, is a high one.

We agree that a spuriously high positive relationship may exist because each infant was subjected to both methods of examination. However, we feel the magnitude of the correlation is strong enough to counter this point. Considering that both the Dubowitz and Robinson assessments are subject to error, a correlation of 0.85 is in fact a very good one. Good (positive) correlation means that low values obtained with the Robinson method would also be low with the Dubowitz method and vice versa. Further response to this part of Mr Altman's criticism is hampered by the usage of terms such as 'in this context' which we, for our own part, find vague.

Our statement that 'the 95% confidence interval for a single estimation of gestational age is \pm one week' is incorrect. This was due to a misinterpretation on our part of the statistician's results. We should, however, like to point out that the standard error of estimate for the Robinson method when measured against the gestational age as determined by LMP is 1.37 weeks, whereas that for the Dubowitz method is 1.94 weeks.

For these reasons and given the magnitude of correlation with only a small chance factor associated with it, it would seem that the Robinson method is a highly suitable alternative to the Dubowitz method for gestational age between 29 and 37 weeks.

G. L. Serfontein and A. M. Jaroszewicz
2911 Bayview Avenue,
Apartment 114A,
Willowdale,
Ontario M2K 1E8,
Canada

Oral rehydration in infantile diarrhoea

Sir,
Chatterjee et al. (Archives, 1978, 53, 284) prefer a solution containing 50 mmol/l sodium for the oral treatment of children with diarrhoea, instead of the 90 mmol/l recommended by the World Health Organisation (1976). In their study of 39 children they found the two solutions were equally effective for rehydration, but that the solution with higher sodium concentration resulted in somewhat more periorbital oedema and hypernatraemia. This difference was not, however, statistically significant.