the CSF of normal children, 69% of whom were aged under 3 years; IgG ranged from 0·1 to 3·6 mg/100 ml with a mean IgG level of 0·84 mg/100 ml. In the 10 children with viral meningitis, IgM was undetectable in 9 children and present in a concentration of 1·6 mg/100 ml in one child; IgM was undetectable in 2 children with bacterial meningitis, and in the remainder it ranged from 0·75 to 5·1 mg/100 ml (mean 2·64). IgG levels were raised in excess of 5 mg/100 ml in 7 of 9 children with bacterial meningitis. The mean levels of all CSF immunoglobulins, particularly IgG, were significantly higher in bacterial than in viral meningitis (Table 2).

Discussion

It is known that serum immunoglobulins are lower in children than in adults. At age 1–2 years serum IgG, IgM, and IgA are 66, 59, and 25% of respective adult values (Stiehm and Fudenberg, 1966). It is believed that CSF immunoglobulins are derived by diffusion from serum, although the lymphoid tissue may produce IgG (Lord et al., 1973).

In the present study a statistically significant difference in CSF IgG levels was shown between normal children and those with viral or bacterial meningitis, although the levels overlapped. High levels of CSF IgG (>5 mg/100 ml) were found in 7 children, and high levels of IgM (>3 mg/100 ml) in 5 of 9 children with bacterial meningitis.

Retrospectively, CSF immunoglobulins did not enhance the diagnostic accuracy of acute childhood meningitis as similar information could be gained from study of the total differential white cell count in combination with protein and glucose analyses (Table 1).

References

Correspondence to Dr Denis Gill, Children's Hospital, Temple Street, Dublin 1, Eiré.

Treatment of a neonate with propionic acidaemia and severe hyperammonaemia by peritoneal dialysis

M. F. ROBERT, D. J. SCHULTZ, B. WOLF, W. D. COCHRAN, AND A. L. SCHWARTZ

Department of Medicine, Children's Hospital Medical Center, Boston, and Department of Human Genetics and Pediatrics, Yale University, New Haven, USA

SUMMARY A moribund newborn infant with propionic acidaemia and severe hyperammonaemia was successfully treated by peritoneal dialysis. The removal of ammonia and possibly additional toxic metabolites by peritoneal dialysis may be life-saving in newborn infants with propionic acidaemia or other hyperammonaemic syndromes.

Propionic acidaemia is a rare inborn error of metabolism which can be present in the neonatal period with persistent ketoacidosis and altered neurological status (Rosenberg, 1978). Survival of an infant thus affected depends on rapid diagnosis and immediate institution of measures to alleviate the chemical imbalances accompanying the disease. The usual treatment is to restrict the proteins while maintaining adequate calories and fluids to prevent the accumulation of harmful metabolites, but occasionally deterioration of the condition of the patient necessitates more drastic removal of these metabolites. We report a case of a neonate with propionic acidaemia who had extremely high blood ammonia concentrations with coma, but who survived after the rapid removal of ammonia by peritoneal dialysis.
Case report

A 3-kg baby girl, born at term after an uncomplicated pregnancy to a 27-year-old mother, was the only child of nonconsanguineous parents. She did well initially and was breast fed for the first days of life. Tachypnoea (>80/min) was noted on the second day of life (Figure) and hepatomegaly on the third, when the baby was transferred to Boston Children's Hospital Medical Center.

On admission (day 3), arterial blood-gases showed a metabolic acidosis with a compensatory respiratory alkalosis—pH 7.30, Po_2 110 mmHg (14.6 kPa), PCO_2 12 mmHg (1.6 kPa), total CO$_2$ 6 mmol/l. White blood cell and platelet counts were normal. Chest x-ray was normal. Serum electrolytes were Na 144, K 4, and Cl 103 mmol/l, resulting in an anion gap of 39 mmol/l, indicating severe metabolic acidosis. The baby had protracted hypoglycaemia which required dextrose infusion, initially at 6 mg/kg per min, to maintain a blood glucose concentration of 100–200 mg/100 ml (5.5–11 mmol/l). When the dextrose infusion was stopped there was a fall in blood glucose within 30 minutes to 27–36 mg/100 ml (1.5–2.0 mmol/l), a level which persisted for more than 2 hours. Thereafter, dextrose infusion at 8 mg/kg per min was required to maintain normoglycaemia. Additional studies included a urine dinitrophenylhydrazine test which was positive for α-keto acids and urine, and plasma amino-acid profiles which were within normal limits. Plasma glycine was 432 mmol/l (normal, 120–560 mmol/l).

On day 4, the baby was flaccid and had sustained ankle clonus. There was no evidence of infection. Because of this change in her previously normal neurological status and the evidence of a metabolic disorder, blood ammonia was determined and was noted to be high at 150 µg/100 ml; 83 µmol/l (normal, less than 50 µg/100 ml; 28 µmol/l). On day 5, her blood ammonia level rose to 350 µg/100 ml (194 µmol/l). She became stuporous in spite of vigorous hydration and adequate caloric administration with dextrose. Attempts to perform an exchange transfusion were unsuccessful.

Therefore, peritoneal dialysis was started, cycling 150 ml each hour with an intra-abdominal dwell time of 30 minutes (dialysis solution per litre: Na 132, Cl 102, K 3·5, Ca 10, Mg 1·5, HCO$_3$ 25 mmol/l, dextrose 15 g, pH 6·8). During the 8th cycle, the respiration arrested and was subsequently maintained by assisted ventilation for approximately 27 hours. At the time of her respiratory arrest, the baby was in coma, with fixed dilated pupils, no spontaneous respirations, and absent reflexes. Blood ammonia shortly after the arrest was 1350 µg/100 ml (748 µmol/l). EEG was consistent with severe toxic encephalopathy.

Despite the baby's condition, dialysis was continued. Subsequent measurements of blood ammonia before and after a dialysis cycle showed a decrease of approximately 100 µg/100 ml (55 µmol/l) during the cycle. At 15 hours, she was no longer acidic. She then began to move spontaneously, and there was gradual neurological improvement. After 30 dialysis cycles (late on day 6), ammonia level was 150 µg/100 ml (83 µmol/l) and dialysis was stopped. She breathed spontaneously and had reactive pupils. She was extubated on the morning of day 7.

On the 8th day, she was started on a low protein diet, 100 kcal/kg (0·5 g/kg per day) with 50% of her calories as even short-chain triglycerides. Results of gas–liquid chromatography and mass spectrometry* of the urine showed the presence of 3-hydroxypropionic acid, methylcitrate, tiglylglycine, and

*Performed by Dr C. Costello, Massachusetts Institute of Technology, and Dr K. Tanaka, Yale University.

Figure : Course of patient with propionic acidosis. Clinical events are noted on the right side and nutritional ones across the top. Blood ammonia concentrations are shown on the left ordinate with the normal range shaded. Age of the patient in days is given along the abscissa.

Conversion: traditional units to SI—ammonia: 1 µg/100 ml ≈ 0·554 µmol/l.
propionylglycine, findings appropriate to the
diagnosis of propionic acidaemia. She was therefore
empirically started on 5 mg per day biotin orally,
which was stopped when her defect was clearly
defined by enzyme studies to be nonresponsive to
biotin. She became increasingly alert, and was
discharged from the hospital on day 12. Her daily
diet consisted of 0·95—1·0 g protein/kg and 120
kcal/kg.

Since discharge, she has had several viral illnesses
with associated metabolic acidosis, ketonuria, and a
peak blood ammonia of 170 μg/100 ml (94 μmol/l); these
have required parenteral treatment with fluids
and a short time in hospital. Otherwise, she has
remained in good metabolic control and has gained
weight, being 6·6 kg at 15 months. Unfortunately,
she developed an athetoid disorder during her
second viral illness and her developmental milestones
are delayed.

Fibroblast and leucocyte enzyme analysis

Propionyl CoA carboxylase (PCC) and β-methyl
crotonyl CoA carboxylase (β-MCC) activities were
measured in isolated peripheral leucocyte extracts
and in skin fibroblast cultures established from the
patient and her parents as previously described
(Wolf and Rosenberg, 1978). As shown in the Table,
the patient has deficient propionyl CoA carboxylase
activity both in her fibroblast and leucocyte extracts.
PCC activities in fibroblast and leucocyte extracts
from both parents were intermediate between
deficient and control values, whereas β-MCC
activities in fibroblast extracts from the patient
and her parents were normal. The patient’s PCC was not
stimulated by incubating her fibroblast cultures in
medium containing 10 mg/ml biotin for 4 days.
Fibroblasts from the patient were assigned to the A
complementation group (Gravel et al., 1977).

Table Propionyl CoA carboxylase and β-methylcrotonyl
CoA carboxylase activities (pmol/min per mg protein)
in leucocyte and fibroblast extracts of patient and
parents

<table>
<thead>
<tr>
<th></th>
<th>Leucocyte</th>
<th>Fibroblast</th>
<th>(\text{PCC activity}^*)</th>
<th>(\text{PCC activity})</th>
<th>(\text{β-MCC activity})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>4</td>
<td>17</td>
<td>297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother</td>
<td>178</td>
<td>399</td>
<td>295</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father</td>
<td>210</td>
<td>559</td>
<td>340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls (n = 8)</td>
<td>349 ± 51*</td>
<td>863 ± 102*</td>
<td>283 ± 32*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 SD.

Discussion

The importance of rapid diagnosis of inborn errors of
metabolism cannot be overemphasised. Our patient
was 4 days old and semicomatose when hyper-
ammonaemia was first noted. Persistent metabolic
acidosis, ketonuria, and progressive deterioration in
neurological status were all clues that the patient had
a metabolic disorder. Tachypnoea, which developed
during the period of breast-milk feeding, and
hyperammonaemia pointed towards protein
intolerance.

The presence of propionate metabolites in the
urine suggested propionic acidaemia, the result of
deficient activity of the enzyme propionyl CoA
carboxylase that normally catabolises propionate
to methylmalonate. The absence of raised propionate
itself in the urine is probably due to its being meta-
bolised via minor pathways and its conjugation with
glycine, which is usually raised in the plasma and
urine of patients with propionic acidaemia. The
normal value of glycine in our patient was unusual
and misleading. However, previous cases of prop-
ionic acidaemia with intermittently normal
concentrations of glycine have been reported
(Wadlington et al., 1975). Furthermore, although
most patients with propionic acidaemia have
normoglycaemia, occasionally a case may demon-
strate slight hypoglycaemia (Rosenberg, 1978); our
patient, however, exhibited severe hypoglycaemia.
The mechanism causing decreased blood glucose is
not known but may involve the inhibition of
 gluconeogenesis.

In addition to propionic acid and glycine, ammonia
concentrations may be raised in the blood of patients
with propionic acidaemia. Hyperammonaemia, as
seen in urea cycle disorders, Reye’s syndrome, or
hepatic failure, and ketoacidosis, as seen in diabetes,
most certainly contributed to our patient’s comatos,
estate. Propionate, which unfortunately was not
measured in our patient, or its metabolites, may also
have primary or secondary toxicity.

Instituting a low-protein diet, sufficient carbo-
hydrates, and even-chain triglycerides is essential, and
is usually sufficient to achieve a homeostatic meta-
bolism in patients with propionic acidaemia (Brandt
et al. 1974). Our patient’s rapid and severe neuro-
logical deterioration required more drastic therapy,
peritoneal dialysis, to remove the toxic agents, but
the fact that dialysis for 30 hours was required to
return the ammonia level to normal suggests that
our patient continued to produce ammonia probably
by catabolism of her own protein. We cannot,
however, exclude the harmful effect of a respiratory
arrest in increasing the blood ammonia concen-
tration or the beneficial effect of assisted ventilation
in reducing the blood ammonia concentration.
Peritoneal dialysis was previously used by Russell
et al. 1974) to remove propionate from a severely ill
infant with propionic acidaemia, but the ammonia
levels were not measured. Peritoneal dialysis has
been used unsuccessfully to treat the severe hyperammonaemia associated with a patient with ornithine transcarbamylase deficiency (Siegel and Brown, 1973). The peak level of ammonia recorded for our patient is the highest yet reported in a patient with propionic acidemia. This case is presented as the first successful demonstration that peritoneal dialysis together with protein restriction, adequate hydration, and sufficient caloric intake can be life-saving in propionic acidemia even after the affected newborn has become moribund.

Note added in proof. At age 20 months, the patient developed a viral gastroenteritis, severe metabolic acidosis, and died.

We thank Dr L. E. Rosenberg for help with this patient.

References

Correspondence to Dr A. L. Schwartz, Department of Medicine, Children's Hospital Medical Center, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.

Transient infantile hyperthyrotropinaemia

Report of a case

KIYOSHI MIYAI, NOBUYUKI AMINO, KEIKO NISHI, TOMIKO FUJIE, KIYOMI NAKATANI, OSAMU NOSE, TOKUZO HARADA, HYAKUJI YABUUCHI, KEI DOL, TOSHIHIDE YAMAMOTO, RITSUKO SATAKE, TSUNEI TSURUHARA, AND TOSHIKI OURA

Central Laboratory for Clinical Investigation and Department of Paediatrics, Osaka University Medical School, Centre for Adult Diseases, St Barnabas's Hospital, and Children's Medical Centre of Osaka City, Japan

Summary A case of transient hyperthyrotropinaemia was found by mass screening for neonatal hypothyroidism using the paired TSH assay method. The patient was a baby boy born at term after a normal pregnancy who grew without any abnormal signs or symptoms. For the first 7 months after birth, his serum TSH was abnormally high while his total serum T4, T3, and free T4, T3 were within normal limits, except for slightly low free T4 level at 7 months. The raised serum TSH decreased spontaneously to within normal limits after he was 9 months old.

With the recent development of techniques for testing thyroid activity, some interesting neonatal cases of thyroid dysfunction have been found. One of the most important developments in this field has been the introduction of mass screening for neonatal hypothyroidism, and several mass screening programmes have been reported. We have developed a new ‘paired TSH assay method’ (Miyai et al., 1978). We were able to screen 91,400 babies between November 1975 and September 1978, and found 9 cases of primary hypothyroidism. We also found a boy who had high TSH but normal levels of thyroid hormones in the serum for 7 months, but whose TSH level decreased spontaneously to within normal limits after 9 months. This syndrome, which apparently differs from the transient neonatal hypothyroidism reported by La Franchi et al. (1977) and Delange et al. (1978), is described.