Maturation of caffeine elimination in infancy

JACOB V. ARANDA, JUDITH M. COLLINGE, RAEZELLE ZINMAN, AND GORDON WATTERS

Departments of Newborn Medicine and Neurology, McGill University-Montreal Children's Hospital Research Institute, and Roche Developmental Pharmacology Unit, Department of Pharmacology and Therapeutics, McGill University, Montreal

SUMMARY The developmental changes in caffeine elimination were studied in 7 infants aged between 2½ weeks and 6 months. Adult plasma clearance rate of caffeine was achieved at 3 to 4½ months of age. Plasma half-life and elimination rate reached adult levels after 3 to 4½ months and seemed to exceed adult capacity thereafter. No significant changes in apparent volume of distribution were noted. Our data provide some indication of the age in infancy when the low rates of caffeine elimination in the neonate increase to the adult rate.

Caffeine (1, 3, 7, trimethylxanthine) is a central nervous system stimulant with many pharmacological activities. It is an ubiquitous compound found in many beverages, food, and medicines. Substantial exposure of the developing human organism to this compound occurs via placental transfer (Parsons et al., 1976; Bory et al., 1979) postnatally via breast milk (Horning, 1977) or intentionally in the treatment of neonatal apnoea (Aranda et al., 1977a). The elimination of this drug in the human neonate is exceedingly slow, far more so than the case with other drugs (Aranda et al., 1977b, 1979). The plasma half-life and clearance in the premature neonate ranges from 40 to 230 hours (mean = 100) and 2·5 to 16·8 ml/kg per h (mean = 8·9), respectively. This implies that the breast-fed newborn and young infant with a significant daily intake of caffeine via maternal breast milk could potentially accumulate caffeine in the body. However, beyond the neonatal period, there are no data on the elimination of caffeine, and the present study therefore attempts to define how caffeine elimination changes in early infancy. The investigative use of caffeine for the prevention of 'cot death' has afforded the opportunity to perform these studies.

Materials and methods

A total of 10 doses of caffeine citrate, 8 as single IV infusions and 2 as single oral doses, were given to 7 infants whose ages ranged from 2½ weeks to 6 months. Five infants were admitted for investigation of 'near-miss' sudden infant death syndrome. An additional 2 sick infants with severe apnoea were also included. One 3-month-old infant had complex congenital heart disease, congestive heart failure, and apnoea, and was respirator dependent. One 6-month-old infant had persistent apnoea with Arnold-Chiari malformation. One infant with 'near-miss' sudden infant death syndrome was studied at ages 2½, 5, and 10 weeks. Another infant was also studied sequentially at ages 4½ and 5 months. Informed consent was obtained from the parents. This study protocol was approved by the Scientific Review Committee and the Ethics Committee of the Montreal Children's Hospital.

After the IV or oral administration of caffeine citrate (10 mg/kg of caffeine base), multiple capillary blood samples were obtained at varying intervals from 30 minutes to 72 hours. Using a plasma volume of 10 ml, caffeine was measured by radioimmunoassay as described by Cook et al. (1976). Metabolite cross-reactivity is negligible as previously determined at this laboratory.

Data were analysed using a one-compartment model. This analysis has been shown to be applicable in the pharmacokinetic disposition of caffeine in the newborn (Aranda et al., 1979), and of theophylline in the newborn (Aranda et al., 1976) and young infant (Loughnan et al., 1976). The plasma concentrations of caffeine were plotted semilogarithmically and the slope of the curve (elimination rate constant or λ) was calculated with the use of log-linear least-square regression analysis. Apparent volume
of distribution (AV_d) was calculated as dose over the
plasma concentration extrapolated to time zero
(C_0). Plasma half-life was derived from 0.693/K_d
and the clearance rate as the product of K_d and
AV_d. In the 2 infants who received caffeine orally,
analysis assumed complete bioavailability of the
drug.

Results

The Figure shows the sequential changes in the
plasma disappearance curve of caffeine in a young
infant with increasing postnatal age. The Table
shows the pharmacokinetic profile of caffeine as a
function of age. Comparative data for the newborn
and adults from the same laboratory were included.
There was little change in the mean AV_d over the
age period studied. Plasma half-life shortened by 1–2½
months of age and attained adult 1½ by between 4
and 6 months. Plasma clearance of caffeine progresively
increased and achieved comparable adult capacity
by 3 to 4½ months and exceeded adult capacity by
5 to 6 months of age. Change in clearance was mainly
a function of an increased elimination rate constant.
There was a wide variability in the elimination rate
and clearance of caffeine in the newborn and young
infant. This wide variability was also observed in
adults (Table).

Discussion

The observation that drugs are eliminated more
slowly by neonates than by adults is no longer
surprising but the magnitude and duration of the deficit
in the case of caffeine exceeds expectations based on
the behaviour of other drugs—such as theophylline
(Aranda et al., 1976), phenytoin (Loughnan et al.,
1977; Painter et al., 1978), and phenobarbitone
(Jalling, 1975; Painter et al., 1978). Both phenytoin
and phenobarbitone exhibit 2- to 6-fold prolongation
in the plasma half-life relative to the adult (Neims et
al., 1976) and the adult level of elimination is
achieved within the first month of postnatal life
(Neims et al., 1976). In contrast, the plasma half-life

![Graph showing plasma caffeine levels over time]

Figure Plasma disappearance curve of intravenously administered caffeine in the same infant at ages 1½ and 2½ months. Caffeine citrate, 10 mg/kg and 5 mg/kg of active caffeine base, were infused at ages 1½ and 2½ months, respectively. Plasma disappearance curve of caffeine in this infant at an earlier age (2½ weeks) was similar to the value obtained at age 1½ months (1½—40–8 hours).

<table>
<thead>
<tr>
<th>Age group</th>
<th>AV_d (1/kg)</th>
<th>t½ (h)</th>
<th>K_d (k⁻¹)</th>
<th>Clearance (ml/kg per h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premature neonates (n = 12)</td>
<td>0.916</td>
<td>102.9</td>
<td>0.009</td>
<td>8.9</td>
</tr>
<tr>
<td>3–32 days</td>
<td>(0.475–1.280)</td>
<td>(40–8–231)</td>
<td>(0.003–0.017)</td>
<td>(2.5–16–8)</td>
</tr>
<tr>
<td>Term neonates (n = 15)</td>
<td>—</td>
<td>80.0†</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0–4 days</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Present report</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Young infants (n = 7)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1–2½ months (n = 4)</td>
<td>0.878</td>
<td>26.3</td>
<td>0.039</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td>(0.58–1.72)</td>
<td>(7.5–40.8)</td>
<td>(0.017–0.093)</td>
<td>(16–2–53.9)</td>
</tr>
<tr>
<td>3–4½ months (n = 3)</td>
<td>0.913</td>
<td>14.2</td>
<td>0.094</td>
<td>104.6</td>
</tr>
<tr>
<td></td>
<td>(0.44–1.41)</td>
<td>(3.6–28.9)</td>
<td>(0.024–0.191)</td>
<td>(14–2–269.3)</td>
</tr>
<tr>
<td>5–6 months (n = 2)</td>
<td>1.120</td>
<td>2.6</td>
<td>0.276</td>
<td>331.7</td>
</tr>
<tr>
<td></td>
<td>(0.70–1.54)</td>
<td>(2.1–3.1)</td>
<td>(2.24–0.329)</td>
<td>(156–8–506.7)</td>
</tr>
<tr>
<td>Adults α</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Nonsmokers</td>
<td>0.610</td>
<td>6.0</td>
<td>0.130</td>
<td>94.0</td>
</tr>
<tr>
<td></td>
<td>(0.12–1.02)</td>
<td>(3.0–9.4)</td>
<td>(0.074–0.234)</td>
<td>(21–0–270.0)</td>
</tr>
<tr>
<td>Smokers</td>
<td>0.720</td>
<td>3.5</td>
<td>0.230</td>
<td>155.0</td>
</tr>
<tr>
<td></td>
<td>(0.12–0.97)</td>
<td>(1.5–5.9)</td>
<td>(0.117–0.461)</td>
<td>(69–0–268.0)</td>
</tr>
</tbody>
</table>

*Comparative data obtained from the same laboratory. Values expressed as mean and range.
†Disappearance curve drawn from 2 points: cord blood sample and a 4-day sample (Parsons et al., 1976). †Includes 3 sequential studies in one infant, ‡includes 1 infant with congenital heart disease and respiratory dependency, ‡includes 1 infant with Arnold-Chiari malformation on phenobarbione and phenytoin, *smoking accelerates caffeine elimination (Parsons and Neims, 1978).
of caffeine represents a 17-fold prolongation relative to the adult, and the adult capacity to eliminate the drug is achieved much later (3-4 months).

One biochemical basis for this finding could be a decreased oxidative metabolism of caffeine by the newborn and young infant (Aranda et al., 1974; Neims et al., 1976). In adults, less than 2% of a caffeine dose is eliminated unchanged in urine, the remainder being metabolised in the liver to a series of partially demethylated xanthines and methyl uric acids (Cornish and Christman, 1957; Burg, 1975). In contrast, Horning et al. (1975) found that transplacentally acquired caffeine was largely excreted unchanged in comparison with its demethylated metabolites in the urine of 1- to 3-day-old neonates. This was confirmed by Aldridge et al. (1979), who found that unchanged caffeine comprised more than 85% of the methylated xanthines and methyl uric acids in the urine of infants less than one month of age. These observations indicate a distinct neonatal deficiency in the capacity to metabolise caffeine, and this deficit persists for many weeks since caffeine remained the predominant component in the urine for at least 3 months postnataally. It is intriguing to relate that the adult plasma clearance rate is achieved at 3-4 months (Table) coincident with the increased capability to produce demethylated metabolites (Aldridge et al., 1979).

The oxidative metabolism of drugs via the cytochrome P-450 mono-oxygenase system is deficient in the human neonate (Aranda et al., 1974; Neims et al., 1976). The relative deficiency with regard to methylxanthine metabolism is greater than seen with other drugs. One subcellular explanation for this difference relates to the existence of multiple forms of cytochrome P-450, each with distinctive substrate specificity and maturation sequence (Thomas et al., 1976; Manchester and Neims, 1977). Caffeine is a good substrate for those form(s) of cytochrome P-450 preferentially induced by polycyclic aromatic hydrocarbons in rats (Welch et al., 1977) and in man. This form of cytochrome P-450 with specific activity for caffeine is probably deficient in the fetus and newborn as suggested by negligible aryl hydrocarbon hydroxylase activity (about 2% of adult value) in the human fetal liver compared with other oxidizable enzymes of the mono-oxygenase complex that preferentially metabolise drugs like phenytoin or phenobarbitone (25-50% of adult value) (Pelkonen et al., 1973; Neims et al., 1976).

Phenobarbitone and phenytoin, both known enzyme inducers, were used in one infant (Table) with the highest clearance rate. The possibility that the elimination of caffeine in this infant could have been induced by these drugs exists, but available data suggest that phenobarbitone and phenytoin have little effect on methylxanthine disposition (Greene et al., 1977; Piaszky et al., 1977; Ogilvie, 1978).

The lack of correlation between indices of maturity (gestational age, postnatal age, birthweight) and the kinetic variables (AVd, t½, Kd, and clearance) during the first 4 weeks of life (Aranda et al., 1979) suggest that elimination does not change during the first few weeks of postnatal life. Shortening of the plasma t½ starts to occur after the neonatal period and appears to reach adult t½ by 5-6 months, perhaps to be exceeded thereafter. A much greater clearance rate of drugs in infants after one year of age has been documented with other drugs—such as digoxin (Morselli et al., 1975; Wettrell, 1977; Wettrell and Anderson, 1977) and theophylline (Loughnan et al., 1976; Ogilvie, 1978). Caffeine appears to behave similarly, based on the observations of a 3-fold increase in the mean caffeine clearance rate in the 5- to 6-month-old infant (Table). The fundamental basis for this accelerated clearance rate in older infants compared with adults remains unknown. Similarly, the duration of this accelerated elimination is also not known. The oldest infant studied here was 6 months and ethical consideration has precluded extension of this study to older normal healthy infants.

In summary, our data show that caffeine elimination, unlike that of other drugs, is exceedingly slow in the neonate with tardy maturation to the adult level.

We thank Dr Allen H. Neims in whose laboratory some of the caffeine assays were done, and Rena Jain for technical assistance. This work was supported by grants from the Medical Research Council of Quebec and Canada.

References
Maturation of caffeine elimination in infancy

Correspondence to Dr. J. V. Aranda, McGill University-Montreal Children's Hospital, 2300 Tupper Avenue, Montreal, Quebec H3H 1P3, Canada.

Received 20 March 1979