Upper airway resistance

Sir,

We are interested in the paper by Purcell (Archives, 1976, 51, 602) on the response of the newborn to raised upper airway resistance, and while accepting the general validity of his conclusion concerning behaviour responses, we are somewhat perturbed by his numerical data. An almost identical experiment, conducted to measure nasal resistance in infancy, was reported by Lacourt and Polgar (1971) who pointed out that the equation governing total pulmonary resistance (R_{total}) is:

$$R_{\text{total}} = R_{\text{lower}} \text{airway} + \left(\frac{R_{\text{small}} \times R_{\text{large}}}{\text{nostril} \times \text{nostril}} \right) + \left(\frac{R_{\text{small}} \times R_{\text{large}}}{\text{nostril} \times \text{nostril}} \right)$$

Applying this equation to Purcell’s data from his text, R (lower airway) is a negative value of -20 cm H₂O/l per second and applying it to the data in his Table, assuming equal nasal resistances, we again calculate a negative value of -54 and -71 cm H₂O/l per second for the two sleep states. Lacourt and Polgar calculated a much more likely value of $+17.9$ cm H₂O/l per second and much lower nasal resistances. Clearly a negative lower airway resistance is impossible and we can only speculate that there was some technical error in Purcell’s otherwise interesting study. Our own experience, and that of others, is that measurement of total pulmonary resistance using the oesophageal balloon technique is very unreliable, especially in the supine infant as studied by Purcell.

JANET STOCKS and SIMON GODFREY,
Department of Paediatrics and Neonatal Medicine,
Hammersmith Hospital,
Du Cane Road, London W12 0HS.

Plasma aldosterone levels in bottle-fed infants

Sir,

In a recent paper, plasma aldosterone levels on day 6 of life were found to be higher in bottle-fed infants than in those breast fed, though there was no difference in the mean values in cord blood (Dillon et al., 1976). The authors were unable to account for their finding, but there are several differences between breast milk and Cow & Gate Babymilk Plus, the formula given to the bottle-fed infants, which could be responsible (Table).

While the sodium content of Babymilk Plus is similar to that of mature breast milk (Macie, 1949), it is considerably lower than the values obtained for colostrom and transitional milk in this laboratory. Colostrum (days 1–3) was found to have a mean sodium concentration of 23.75 mEq/l (23.75 mmol/l) and a mean potassium concentration of 18.5 mEq/l (18.5 mmol/l), which fell by the sixth day post partum to 17 mEq/l and 16.78 mEq/l respectively (Ansell et al., 1976). By day 6 of life a breast-fed infant will have had a greater total sodium intake than an infant fed on Babymilk Plus from birth, and it may be argued that the bottle-fed infants had a relative deficiency of sodium and thus a greater stimulus to the aldosterone sodium-conserving mechanism than the breast-fed infants.

The difference in pH between Cow & Gate Babymilk Plus and breast milk is considerable (Table). It has been shown that breast-fed infants excrete fewer hydrogen ions