Mannosidosis
Clinical and biochemical study

P. J. MILLA, I. E. BLACK, A. D. PATRICK, K. HUGH-JONES, AND V. OBERHOLZER
From the Institute of Child Health, London, St. Albans City Hospital, and Queen Elizabeth Hospital, London

SUMMARY The clinical, radiological, and biochemical features of 2 male children with mannosidosis are described. Superficially they appeared to suffer from Hurler’s syndrome, but the facies, eye signs, radiological and cytological features were atypical. Excess urinary oligosaccharides were found by thin-layer chromatography. The diagnosis was confirmed by determining the acidic α-mannosidase activity of leucocytes and cultured skin fibroblasts. Prenatal diagnosis is possible from cultured amniotic cells.

Mannosidosis belongs to a group of disorders variously described as oligosaccharidoses or glycoprotein storage diseases and superficially resembles Hurler’s syndrome in its clinical manifestations. The disease is genetically determined and is inherited as an autosomal recessive. Characteristically, patients show progressive psychomotor retardation, coarse facies, skeletal deformities, hepatosplenomegaly, lens opacities, and have vacuolated lymphocytes.

The disorder was first defined biochemically by Öckerman (1967) who demonstrated accumulation of mannose-rich oligosaccharides in the tissues of patients which could be accounted for by a severe deficiency of acidic α-mannosidase activity. Mannose-containing oligosaccharides are also excreted in the urine of patients (Nordén et al., 1973). Recently Farriaux and Fontaine (1976) reviewed the few published case reports, gave a general description of the clinical features, and defined the biochemical criteria necessary for establishing the diagnosis.

It is likely that the full spectrum of the symptomatology of this disorder has not yet been defined. For this reason and because no cases have so far been reported for England, we report 2 patients studied at the Hospital for Sick Children and the London Hospital, and St. Albans City Hospital.

Case reports

Case 1. A boy was born normally at term, on 18 August 1957, birthweight 3·6 kg. During the first 3 days of life he had respiratory difficulties, thereafter the neonatal period was normal. From the age of 3 months he had recurrent respiratory infections which led to a right upper lobectomy at 11 months, though development during the early months was considered normal. Crawling was delayed until 1 year of age and walking until 2½ years, at which time he had few clearly recognizable words, and was found to have a severe conductive deafness.

A further respiratory infection at the age of 3 years led to readmission. He was then found to have coarse facies, broad hands, a lumbar kyphosis, and hepatosplenomegaly. There were no eye abnormalities. X-rays of skull and spine were reported to be typical of Hurler’s syndrome; urine contained excess glycosaminoglycans, and coarse cytoplasmic vacuoles were present in lymphocytes of peripheral blood.

A developmental assessment on a Ruth Griffith’s profile gave an overall development quotient of 49 with particularly marked delay in hearing/speech and performance categories. He was placed in a nursery school for the mentally handicapped at this time and later attended the primary and junior departments of the same school.

Recurrent upper and lower respiratory tract infections continued, adenoids were removed at 4 years, and tonsils at 7 years. The previously noted abnormalities were still present. At the age of 8 he developed a right-sided empyema and osteomyelitis of the left tibia, both due to Staphylococcus aureus. Since then he has had no further important infections.

Around the age of 15 years, his gait had become lopsided and over the next 2 years exercise tolerance
became limited by pain and dyspnoea. On readmission his speech consisted of grunted sounds intelligible only to his parents. Motor function was clumsy. The physical features noted previously were still present; liver and spleen were no longer palpable and now a very obvious kyphoscoliosis is present as shown in Fig. 1.

Fig. 1 Case 1 aged 17 years. The coarse facies and broad hands are still present. The kyphoscoliosis is now very obvious.

Again the lymphocytes had coarse PAS-positive vacuoles, often occurring in clusters around the nucleus. Urinary glycosaminoglycan : creatinine ratio was 25 (normal range for age 18–67). X-rays showed a thickened calvarium and broad ribs. The spine, in addition to the obvious kyphoscoliosis, was abnormal at all levels, with irregular disc spaces and erosions, and beaking of the vertebral bodies (Fig. 2). Respiratory function studies showed that the dyspnoea on exercise was due to moderately severe restrictive lung disease resulting from the structural changes in the spine. Tests of immunological function including leucocyte function tests were normal, and no explanation was found for the recurrent infections. The biochemical studies which led to the diagnosis of mannosidosis are described below.

At the time of writing the patient is 19 years of age, lives at home, and attends a training centre. Activities within the community are restricted by his difficulty in communication and by pain and dyspnoea on exercise. Communication has improved recently as he has been placed with a group of adolescents with hearing difficulties at his training centre.

Case 2. A boy was born normally at 37 weeks, on 23 January 1973, birthweight 2·5 kg. He progressed normally during the first year, sitting up at 6 months, standing with support at 8 months, and walking at 1 year. Height and weight had followed the 50th centile since birth.

At 18 months he kept falling over and was noted to be overactive, to have a lumbar kyphosis, coarse facies, and broad hands (Fig. 3). Examination of his eyes showed very early cataract formation with punctate opacities arranged like the spokes of a cartwheel. By the age of 21 months he had mild hepatosplenomegaly; and the punctate lenticular opacities had coalesced to form the spoke-like cataracts shown in Fig. 4.

X-rays showed a thickened calvarium, broadened ribs, and kyphosis at the level of the 2nd lumbar vertebrae with beaking of the bodies of the 2nd and 3rd lumbar vertebrae. Lymphocytes of peripheral blood contained PAS-positive vacuoles. The glycosaminoglycan : creatinine ratio was slightly increased at 201 (normal range for age 60-192). The biochemical findings which led to the diagnosis of mannosidosis are described below.

Developmental assessment at 2½ years showed an overall development quotient of 69 on a Ruth Griffith’s profile with particular delay in hearing/speech and performance categories. The delay in hearing and speech was also shown on Stycar Hearing Tests and the Reynell Development Language Scale (verbal comprehension 1 year 8 months, expressive language 1 year 6 months).

The patient is now 3½ years of age, and lives at home. His general condition is deteriorating, he suffers from frequent upper respiratory tract infections, and growth velocity has fallen, his height being below the 25th centile. The abnormal physical features are more marked, and developmentally he is falling further behind. A Ruth Griffith’s profile gave an overall development quotient of 63; delay in the hearing/speech and performance categories have become more marked, performance being about the 2-year level. Formal hearing testing suggested that he has a conductive deafness.

Biochemical investigations

24-Hour urine specimens were collected from Case 1 and random specimens from Case 2. Purified leuco-
cyte pellets and plasma specimens were obtained from both patients and their parents. Fibroblast cultures grown in medium 199 plus 15% fetal bovine serum were established from skin biopsies from the 2 patients.

For the chromatography of urinary oligosaccharides, ethanol was added to an equal volume of urine, and the mixture (40 μl) applied to thin-layer plates of silica gel (Silica Gel 60, No. 5553, Merck). After chromatography for 2 hours in a solvent system, n-butanol-acetic acid-water (2:1:1 by volume) sugars were located with aniline-diphenylamine reagent.

α-Mannosidase was assayed in centrifuged supernatants from homogenates of leucocytes or fibroblasts in 0.2 M KCl. The standard assay mixture contained: 2.5 mM 4-methylumbelliferyl-α-D-mannopyranoside (Koch-Light Ltd.) in 0.05 M citrate-phosphate buffer pH 4.0 (200 μl), and leucocyte or fibroblast extract (5 μl, containing 50-70 μg protein) or plasma (5 μl). Where appropriate the buffer-substrate solution also contained 0.5 mmol Zn⁺⁺/l. Blank assays contained no enzyme. After 15 minutes’ incubation at 37°C for leucocyte or fibroblast assays, or 60 minutes for plasma assay, 2.3 ml of 0.25 M glycine-NaOH, pH 10.4, was added and the fluor-

Fig. 2 Case I. X-rays of the dorsolumbar spine, showing marked kyphoscoliosis. The vertebral bodies show beaking, erosions, and partial collapse.
escence of the liberated 4-methylumbelliferone measured. One unit of activity was equivalent to the hydrolysis of 1 nmol of substrate per hour at 37°C.

Protein was determined by the method of Lowry et al. (1951).

Results

Urine oligosaccharides. Thin-layer chromatography showed a heavy oligosaccharide band as the major abnormality in the urines from the 2 patients. This mannose-containing substance (Rf 0.27) coincided exactly with an authentic specimen of M₃G-trisaccharide isolated from the urine of a patient with proven mannosidosis (Nordén et al., 1973).

α-Mannosidase. Activity in leucocytes, plasma, and cultured fibroblasts of the 2 patients and in leucocytes and plasma of their parents are summarized in the Table. As in other reported cases, the character-

<table>
<thead>
<tr>
<th>Table</th>
<th>α-mannosidase activity (pH 4.0) of leucocytes, plasma, and cultured fibroblasts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Leucocytes (U/mg protein)</td>
</tr>
<tr>
<td>Case 1</td>
<td>6</td>
</tr>
<tr>
<td>Mother</td>
<td>54</td>
</tr>
<tr>
<td>Father</td>
<td>121</td>
</tr>
<tr>
<td>Case 2</td>
<td>4</td>
</tr>
<tr>
<td>Mother</td>
<td>110</td>
</tr>
<tr>
<td>Father</td>
<td>72</td>
</tr>
<tr>
<td>Controls</td>
<td>range (mean) 101–463 (193)</td>
</tr>
<tr>
<td>(n=20)</td>
<td>(n=12)</td>
</tr>
</tbody>
</table>

Fig. 3 Case 2 aged 18 months. The coarse facies, broad hands, and lumbar kyphosis can be seen.

Fig. 4 Case 2. Slit lamp photograph of lens, showing spoke-like opacities of the posterior cortex of the lens.
istic enzymic abnormality in the patients was a severe
deficiency of α-mannosidase activity at a pH optimum
of approximately 4. The residual levels of activity
ranged between 2 and 6% of the mean values for
corresponding controls. For the patients and
controls the enzymic activity at pH 4-0 was stimu-
lated approximately 20% in the presence of 0.5
mM Zn++. Other mannosidase components, with
optimum activities in the pH ranges 5-0-5-5 and
6-0-6-5 are present in normal cells and plasma, and
these components were shown to be present at
normal levels of activity in the patients.

The specific activity of acidic α-mannosidase in
plasma and leucocytes of the parents, presumed
heterozygotes for the condition, were 23 and 28%
respectively of the mean values of the controls.
Considerable overlap with the normal range was, how-
ever, found so that heterozygosity could not be
defined with confidence. Masson et al. (1974) showed
that the determination of the ratio of α-mannosidase
activity to that of an unaffected enzyme, hexo-
saminidase A, allows differentiation of heterozygotes
from homozygous affected and normal subjects.
Similarly, in our families determination of the ratio
of α-mannosidase to β-galactosidase activity in
leucocytes allowed such differentiation to be made.

Discussion

Only few cases of mannosidosis have been reported
since the first description by Öckerman (1967) and
the full spectrum of the symptomatology cannot yet
be defined. The clinical picture is becoming clearer
and certain cardinal findings are emerging. In the
fully developed picture, symptoms and signs are
generally similar to those of Hurler’s syndrome, with
course facies, psychomotor retardation, skeletal ab-
normalities, hepatosplenomegaly, and opacities of
the lens. The 2 patients reported here showed most
of these features and in our first patient, slow
development and clumsiness were noted towards the
end of the first year.

The most marked skeletal changes were a thick-
ened calvarium, eroded and beaked vertebral bodies,
and a lumbar kyphosis. With the exception of the
case reported by Tsay et al. (1974), which resembles
Case 2 in his very early stages, vacuolated lympho-
cytes were present in all the reported cases and were
invariably detected in our patients. In both our
patients at least 30% of peripheral lymphocytes were
vacuolated.

Both patients suffered from a speech defect, due
to both defective comprehension and expression; in
our first patient, the defect only allowed him to
communicate within the close family circle. They
both suffer from a conductive deafness with onset in
late infancy which must play an important part in
their speech abnormality but it is uncertain whether
the deafness is the result of the frequent upper
respiratory tract infections or more directly of the
mannosidosis. Recurrent infections, which are a
feature of Hurler’s syndrome, and have been re-
ported in mannosidosis, occurred in both patients,
ceasing in the first patient at about the age of 8 years.
Bilateral spoke-like cataracts were present in Case 2
whereas no eye abnormality has been found in Case
1. Cataracts have been found in 4 of the previously
described cases and in 2 of these were described as
wheel-like. Murphee et al. (1976) have shown in one
patient that the opacities consist of multiple vacuola-
tions in the posterior cortex of the lens. The origin
of these vacuolations is uncertain but it is unlikely
that they are lysosomal in origin. Ketoacidosis, which
led to the death at the age of 4½ years of the patient
reported by Kjellman et al. (1969), was not noted
in our patients nor in the other published cases.

Case 1 is now 19 years old but is seriously handi-
capped by skeletal and speech defects. The marked
kyphoscoliosis has resulted in a lopsided gait and
dyspnoea on exercise due to severe restrictive lung
disease. Case 2 is now 3½ years old and although
perhaps less severely affected than Case 1 at the
same age, he seems to be following a similar course
in many respects.

The clinical, radiological, and haematological find-
ings in the cases of mannosidosis described here and
in previous reports (Farriaux and Fontaine, 1976)
point to a diagnosis of a ‘storage disorder’ but are
not specific for mannosidosis. Other lysosomal
diseases which result from a failure of degradation
of the complex carbohydrate chains of sphingo-
lipids, glycosaminoglycans, and glycoproteins, as
well as the more generalized lysosomal defects of the
mucolipidoses, manifest similar symptoms and signs.
The definitive diagnosis depends on the demonstra-
tion of the underlying specific biochemical abnor-
mality; namely, a deficiency of lysosomal α-manno-
sidase.

α-Mannosidase activity with a pH optimum of
approximately 4-0 is reduced to very low levels in
all tissues from affected individuals and represents
the combined loss of the A and B acidic components
of lysosomal α-mannosidase (Carroll et al., 1972).
The enzymic deficiency can be detected easily and
reliably using plasma or leucocytes (Masson et al.,
1974) or cultured skin fibroblasts (Taylor et al.,
1975). The low levels of residual α-mannosidase
activity determined in these tests at pH 4 is proba-
bly due to a small contribution from intermediate and
neutral mannosidase components which are un-
affected in mannosidosis. This applies particularly
to assays using plasma in which the major α-man-
Winchester study, M., Carroll, References position a

We thank not been fibroblasts. To properties of otic cultured amniotic cells. The detection of excess oligosaccharides by direct thin-layer chromatography of urine on silica gel (Humbel and Collart, 1975) provides a useful corroborative or screening test in the investigation of patients showing the clinical, radiological, or haematological features of a 'storage disorder'.

Prenatal diagnosis is theoretically possible from cultured amniotic cells. Taylor et al. (1975) showed that the specific activity and electrophoretic properties of the acidic α-mannosidase in cultured amniotic cells are similar to those found in cultured skin fibroblasts. To date, however, prenatal diagnosis has not been undertaken though many laboratories are in a position to do so should the occasion arise.

We thank Professor C. B. S. Wood for allowing us to study his patient. We are grateful to Dr. Brian Winchester for the M₄ trisaccharide reference substance, part of a gift from Dr. A. Lundblad.

References

Correspondence to Dr. P. J. Milla, Institute of Child Health, 30 Guilford Street, London WC1N 1EH.