Cardiac biopsy in childhood

E. H. MACKAY, D. PICKERING, AND W. A. LITTLER*

From the Departments of Pathology, Paediatrics, and Cardiovascular Medicine, Radcliffe Infirmary, Oxford

SUMMARY Endomyocardial biopsy was attempted in 18 children aged 5 months to 15 years with 82% success. Biopsies obtained from 15 children were examined by light and electron microscope making positive morphological diagnoses in 3 cases. The biopsy findings were actively helpful in 7 other cases, which contrasts with experience in adult biopsy series. This is a low risk procedure which does not add to the hazards of cardiac catheterization in children.

Most systems of the body are now accessible to biopsy and hepatic, renal, and jejunal biopsies have an established place in paediatric practice. Knowledge of disease in these systems has advanced rapidly following the introduction of simple biopsy techniques which allow the correlation of early histological changes with the clinical features, the effect of therapy, and prognosis. Even with these established methods, bleeding and accidental perforation of a viscus remain hazards, and it was risks such as these plus the added fear of arrhythmias which delayed the introduction of endomyocardial biopsy into routine paediatric practice. Thus out of 14 published series of cardiac biopsy involving 1258 patients, none are specifically concerned with children and only about a dozen patients under 15 years of age are included. In two-thirds of the series the patients’ ages were not mentioned at all!

Although congenital structural defects are the commonest paediatric problem a significant number of children have heart muscle disease. A recent survey of cases of sudden death in childhood (Lambert et al., 1974) showed that 28% of sudden deaths in 254 children aged between 1 year and 21 years were due to cardiomyopathies, endocardial fibroelastosis, and myocarditis. These cases, and possibly infants dying with cardiomyopathy such as those described by Doshi and Lodge (1973), had structural abnormalities of the myocardium which may well have been detectable by biopsy though not necessarily by other means.

As part of an assessment of the clinical diagnostic value of endomyocardial biopsy (MacKay et al., 1977) we have included infants and children with a variety of cardiac disorders in whom it was felt a histological diagnosis would be helpful. This report is an evaluation of our experience at the Radcliffe Infirmary and deals specifically with the indications for, limitations of, and value of cardiac biopsy in childhood.

Materials and methods

All of our biopsies were taken at the end of a routine cardiac catheterization using the child-size Konno endomyocardial biop Pompee (9F gauge) in 5 cases and the King’s biop Pompe (7:5F gauge) (Richardson, 1974) in 13 cases. One left ventricular biopsy was obtained with the King’s biop Pompee via an axillary arteriotomy and the remainder were taken from the right ventricular septum via a saphenous vein cut-down or percutaneously using the femoral vein.

In the majority of cases only a single biopsy was taken and this was examined by light and electron microscope (EM). Tissue from the first 2 cases was divided and fixed immediately in neutral 10% formalin or 4% phosphate-buffered glutaraldehyde before processing into paraffin wax or Araldite resin. Subsequent biopsies all had a 5-minute prefixation period in ice-cold 1% paraformaldehyde with 0:2 M sucrose (PF/S) as described previously (MacKay et al., 1977) before further processing into Araldite. Thin sections were examined by light microscope and a preliminary report issued. Ultrathin sections of selected areas were cut, stained with uranyl acetate, and lead citrate and examined in a Philips 301 electron microscope. Histochemistry was not attempted in these cases and none of the tissue was submitted for virological studies.

Results

Endomyocardial biopsy was attempted in 18 children including 11 boys and 7 girls aged from 5 months (7.8 kg) to 15 years, (average age 6.6 years).
Table: Reasons for biopsy with clinical/pathological diagnosis in 15 successful cases and indication of benefit to child

<table>
<thead>
<tr>
<th>Indications for biopsy</th>
<th>Clinical diagnosis</th>
<th>Sex/age (yr)</th>
<th>Pathological diagnosis</th>
<th>Benefit to child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angina</td>
<td>HOCM</td>
<td>M 11</td>
<td>HOCM</td>
<td>Confirmatory; died; no necropsy</td>
</tr>
<tr>
<td>Effort syncope</td>
<td>HOCM</td>
<td>M 13</td>
<td>Hypertrophy ++</td>
<td>Limited help</td>
</tr>
<tr>
<td>Abnormal ECG*</td>
<td>HOCM</td>
<td>M 12</td>
<td>Normal</td>
<td>Helpful—normal catheter</td>
</tr>
<tr>
<td>Q ↑ T ↓</td>
<td>Dystrythias</td>
<td>M 10</td>
<td>Mitochondrial myopathy</td>
<td>Help</td>
</tr>
<tr>
<td>R ↑ + +</td>
<td>Skeletal myopathy</td>
<td>M 2‡</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>WPW</td>
<td>VSD</td>
<td>F 4</td>
<td>?Myopathy</td>
<td></td>
</tr>
<tr>
<td>?EFE</td>
<td>VSD</td>
<td>F 20 m</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>FH positive</td>
<td>Coarctation</td>
<td>F 8</td>
<td>Nonspecific</td>
<td>Limited help; exclude EFE</td>
</tr>
<tr>
<td>FH negative</td>
<td>VSD/PS</td>
<td>F 9</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Noonan's syndrome</td>
<td>PS, L axis + +</td>
<td>M 2</td>
<td>Hypertrophy ±</td>
<td></td>
</tr>
<tr>
<td>Abnormal left ventricular angiogram</td>
<td>Cardiac tumour</td>
<td>M 4‡</td>
<td>Hypertrophy ±</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15 cases</td>
<td>5 abnormal (33%)</td>
<td></td>
</tr>
</tbody>
</table>

*ECG abnormality out of proportion to clinical signs
HOCM = hypertrophic obstructive cardiomyopathy; EFE = endocardial fibroelastosis; WPW = Wolff, Parkinson, White syndrome; VSD = ventricular septal defect; PS = pulmonary valvular stenosis; FH = family history

Adequate biopsies were obtained in 15 cases giving a success rate of 82%. The indications for biopsy, the pathological findings, and the value of the biopsy are summarized in the Table. Unequivocal morphological diagnoses were made in 3 cases (20%) of the 15 successful biopsies. The first, a boy of 11 years, had clinical and catheter evidence of hypertrophic obstructive cardiomyopathy having presented with chest pain on exertion. Right ventricular biopsy showed no real evidence of fibre hypertrophy (mean fibre diameter 12-7 μm, range 7-20 μm) but excessive branching, increased perinuclear glycogen, and myofibrillar disarray with increased numbers of mitochondria on EM. Biopsy confirmed the clinical diagnosis and the child initially did well when treated by beta-blockade but died suddenly 18 months later. Tragically his father also died of a fungal endocarditis after prosthetic replacement of his calcified aortic valve and necropsy examination showed changes of hypertrophic obstructive cardiomyopathy in the father's left ventricle which had not been suspected clinically.

The second positive diagnosis was of a mitochondrial myopathy in a boy of 10 years with a proximal skeletal myopathy and striking neck weakness. There was no family history of skeletal or cardiac muscle disease and at first he was thought to have a variety of hypertrophic cardiomyopathy. EM showed unique abnormalities of his cardiac mitochondria which were increased in size and numbers with formation of ring-shaped forms. This case has been reported fully elsewhere (Mackay et al., 1976) and may represent a new syndrome tentatively called toroconial myopathy (Latin torus—a ring). The third positive diagnosis was of endocardial fibroelastosis (EFE) in a 9-month-old girl with incontinentia pigmenti whose elder sister had died of cardiac failure due to EFE. The endocardium in the biopsied child (Fig. 1) was 120 μm thick (normal 10-15 μm) but the myocardium was essentially normal. The confirmation of EFE in this child may also represent a new syndrome linking it with the skin lesions but the main importance of the biopsy findings was in aiding genetic counselling of the parents in this case.

Conversely, the finding of a normal endocardium was considered valuable in helping to exclude a clinical diagnosis of EFE in 3 further cases, 2 of

Fig. 1 Right ventricular biopsy (female 9 months) showing endocardial fibroelastosis 120 μm thick. Bundles of collagen (c) mixed with elastic tissue (e) and fibroblast-like cells (f). (EM × 1880.)
whom had congenital structural heart disease and
the other a haemodynamically normal heart on
catheterization. As with any biopsy procedure a
normal appearance does not necessarily exclude
disease elsewhere in the organ but a completely
normal biopsy makes the presence of diffuse disease
unlikely. Thus a 15-year-old boy with Noonan’s
syndrome, pulmonary valvular stenosis, and left
axis deviation on electrocardiogram showed moder-
ate fibre hypertrophy only (mean 17.5 μm) on right
ventricular biopsy. The absence of features suggest-
ing cardiomyopathy taken in conjunction with the
clinical and catheter findings permitted the lifting
of the exercise restrictions placed on this boy in the
USA.

One case is not yet resolved. A 20-month-old girl
had a small ventricular septal defect and a large left
ventricle with signs of left ventricular failure. Right
ventricular biopsy (Fig. 2) showed a normal endo-
cardium but definite fibre hypertrophy in the range
16–20 μm diameter, with large nuclei and prominent
nucleoli. Quantitative EM showed a considerable
increase in mitochondria (44–52% of the fibre area
compared with 25% in normals) and the presence of
intramitochondrial glycogen (Fig. 3) similar to that
reported by Jones and Ferrans (1973) in the in-
fundibular muscle of children with congenital heart
disease. The degree of mitochondrial proliferation
again suggested a myopathy but there was no skeletal
weakness. Biopsy was useful in this case in
alerting us to the possibility of the future develop-
ment of muscle disease and encouraging a careful
follow-up.

One other important application of biopsy was in
the case of a 4½-year-old boy who was shown to have

Fig. 2 Right ventricular biopsy (female 20 months) with
suspected myopathy, showing increased size and numbers
of mitochondria (52% of fibre area). (EM ×5500.)

Fig. 3 Same case as Fig. 2 showing intramitochondrial
collection of β-glycogen particles. (EM ×52 000.)

an intramyocardial tumour of the left ventricle.
Initially this appeared as an area of thickening in
the ventricular wall distorting the angiogram, and its
nature was uncertain. Left ventricular biopsy via an
axillary arteriotomy showed no evidence of diffuse
muscle disease, rhabdomyomatosis, or fibrosis and
this improved the prospects for surgery. At operation
an intramural fibroma 6 cm maximum diameter and
weighing 43 g was removed and the child has made
an uneventful recovery.

The remaining biopsies were normal or showed
nonspecific features—mainly of hypertrophy—and
were of little or no help. One from a child with typical
hypertrophic obstructive cardiomyopathy showed
very marked hypertrophy but no classical diag-
nostic features and added nothing to the catheter
diagnosis.

Biopsies were not obtained in 3 cases. In one the
jaws of the King’s biopette failed to close properly
after attempts to create a bend in the otherwise
straight catheter. One simply failed to produce any
tissue after 3 attempts with the Konno catheter, and
in one 15-month-old girl the veins were too small to
pass the King’s catheter from the leg. Apart from a
transient loss of distal pulses in the arm after the
only left ventricular biopsy there were no untoward
incidents resulting from or associated with the biopsy
procedure in these children.

Discussion

The indications for cardiac biopsy in childhood are
basically the same as those applying to adults. In all
cases an initial clinical diagnosis was made on the history, clinical examination, and basic investigations including electrocardiogram, chest x-ray, and frequently echocardiography. If cardiac catheterization and angiography were undertaken and there was a significant possibility of endocardial or myocardial disease, preparations for cardiac biopsy were also made. The majority of cases in this study represent those in which there was still a possibility of diffuse endocardial or cardiac muscle disease of undetermined type or extent after other investigations had been done. Using these criteria the biopsies in this series were taken primarily for diagnostic purposes, though they have a definite but secondary research value.

Positive histological diagnoses were made in 3 cases and the biopsy findings were helpful in the management of a further 7 out of the 18 cases in the series. Thus 55% of the attempted biopsies proved useful and we regard this as full ethical justification for the use of this procedure in childhood. This positive diagnosis and helpful biopsy rate compares favourably with rates of 13% for cerebral biopsy (Bolsthauser and Wilson, 1976) and 34% positive diagnoses for jejunal biopsy in children (Townley and Barnes, 1973). It is also considerably better than the overall helpful cardiac biopsy rate of around 10% in adults because of the greater value of normal biopsies which help to exclude endocardial fibroelastosis. In the same way normal jejunal biopsies are extremely useful in excluding coeliac disease and thereby considerably improve the 34% figure mentioned above.

Even in these young children the King's and the larger Konno biotomes were passed transvenously with little difficulty in all but the one case mentioned above. The King's catheter being thinner is certainly more flexible but is perfectly straight. A built-in curve at the distal end would be of great help in manipulating the biotome into the right ventricle from the inferior vena cava after the usual approach from the leg. If there is a delay in reaching the ventricle, fibrin strands tend to form around the jaws causing the cutting edges to slip. This can be reduced by placing a drop of heparin solution on the biotome jaws immediately before insertion. These children did not receive anticoagulants routinely and observations in adults have shown that the biopsy site is small (undetectable in most series), heals quickly, and does not show mural thrombus formation (Mackay et al., 1977).

The biopsy obtained is small (about 2 mm in diameter) and though this tends to restrict the number of possible investigations, it is probably an advantage in children because it further reduces the risk of ventricular perforation if the biopsy is taken correctly. Repeated biopsies at the same session using the long sheath technique are not advisable for two reasons: it is often difficult to fit a sheath and biotome into small vessels, and there may be an increased risk of perforation due to taking repeated biopsies from or near the same site.

Considering that these biopsies were taken mainly for diagnostic purposes the best results were obtained by processing them into Araldite, which permits quick reporting by light microscopy on thin sections, plus EM for fine detail without loss or wastage of precious material. Histochemistry is probably not justified on such small amounts of tissue, though in future further refinements of the biochemical assay methods used by Peters et al. (1976) may be useful. Virological culture of part of the biopsy in cases of suspected myocarditis could obviously be helpful in the acute stage. Unfortunately in most reported paediatric cases of fatal viral myocarditis the history is either very short or death is sudden and unexpected (Whitehead, 1965; Lambert et al., 1974) so that the majority of these children would not receive a full catheter investigation even if it was considered necessary. Furthermore, virus cannot be recovered from the heart (at least in experimental situations) after 8–10 days from the onset of infection (Burch et al., 1966; Wilson et al., 1969). On the other hand, morphological evidence of infection can be found for approximately 2–3 weeks in coxsackie A myocarditis and damage can be seen for up to 6 months after coxsackie B virus infection of the heart (Wilson et al., 1969), which is why none of our biopsies were cultured.

Immunofluorescent methods are notoriously unreliable on human heart tissue due to nonspecific binding of antibody to muscle fibres. This makes it difficult to evaluate reports claiming an incidence of 30% positive immunofluorescence tests on routine necropsy cases (Burch et al., 1967) without culture confirmation of viral infection. Histologically the hearts of patients with cardiomyopathies do not in general show features of an immunological reaction in progress, though this may be seen in adults with active systemic lupus erythematosus, for example. For these reasons and because of the limited quantity of tissue obtained we have not attempted immunological studies on any of these biopsies.

We feel that paediatric cardiac biopsy is a low-risk procedure which does not require further 'invasion' beyond the standard catheterization procedure. It is now possible to offer a histological diagnosis to 20% or more of selected children with diffuse cardiac disease and to add useful information in a further 30–40% of cases which could not be
achieved by other means. It should, however, be noted that the latter is largely a result of excluding various conditions, and contrasts sharply with experience in adults.

We thank Professor P. Sleight for provision and instruction in the use of the cardiac biopsy catheters, and Mr. D. W. Jerrome and Mrs. C. Forster for their work on the electron micrographs. E.H.M. is in receipt of a locally organized clinical research grant no. 72/180.

References

Correspondence to Dr. E. H. MacKay, Harkness Laboratory, Radcliffe Infirmary, Oxford OX2 6HE.