similar uptake of 14C-cholesterol in Schilder’s disease and control cells when cultured in labelled medium for 13 days. The difference between our results and those of Burton and Nadler (1974) are unexplained. Clearly more studies are required.

P. F. BENSON and A. H. FENSOM

Paediatric Research Unit,
Prince Philip Research Laboratories,
Guy’s Hospital Medical School,
London SE1 9RT.

J. WILSON

The Hospital for Sick Children,
Great Ormond Street,
London WC1N 3JH.

REFERENCES

Intramuscular versus oral phenytoin

Sir,

The use of intramuscular phenytoin was recommended for seizures in the review article on bacterial meningitis by Hambleton and Davies (Archives, 1975, 50, 675). Prior reports comparing oral versus intramuscular administration have shown conflicting results. Recent evidence (Serrano and Wilder, 1974; Serrano et al., 1973) has shown that a portion of injected phenytoin is released immediately and the remainder is released over a prolonged period; the half-life is prolonged and drug levels are low. In addition, experimental studies (Wilensky and Lown, 1973) have shown crystallization of diphenylhydantoin and haemorrhage at the injection site. Serrano and Wilder (1974) showed this to be a variable finding but with chromatographic analysis phenytoin was retained at the injection site at 24 hours.

In seriously ill or unconscious patients in whom adequate levels are required, phenytoin must be given intravenously with its recommended caution. There appears to be little place for the use of intramuscular phenytoin because of variable blood levels and potentially harmful effects on muscle. Should it be necessary, the duration of intramuscular injections should be short and blood levels should be monitored to achieve the desired therapeutic range.

B. D’SOUZA

Dept. of Neurology, Milwaukee Children’s Hospital,
1700 W. Wisconsin Ave.,
Milwaukee, Wisconsin, 53233 U.S.A.

REFERENCES

We showed the letter from Dr. D’Souza to Dr. Davies and Dr. Hambleton, who replied as follows:

We are grateful to Dr. D’Souza for drawing our attention to the fact that release of a portion of intramuscularly injected phenytoin may occur gradually over a prolonged period. This makes it, as he says, an unsuitable drug for the immediate treatment of fits. However, we suggested either intravenous diazepam or intramuscular paraldehyde for this, to be followed by short-term anticonvulsant therapy such as phenobarbitone or phenytoin. If oral treatment is not possible, as is so often the case in the very sick infant or child, then intramuscular phenobarbitone would be the drug of choice after the initial treatment.

GARRY HAMBLETON and

PAMELA A. DAVIES

Hammersmith Hospital,
150 Du Cane Road,
London W12 0HS.

Blood urea levels in artificially-fed infants

Sir,

Dale et al. (1975) report high levels of blood urea in artificially-fed infants, confirming the results of a previous study by Davies and Saunders (1973). This finding was a surprise to us, for it is in disagreement with our daily experience in hospitalized infants fed on artificial milk, and prompted us to check plasma urea, sodium, and protein in 22 consecutive infants (14 male, 8 female) aged between 14 days and 3 months. All were convalescent from benign, nondigestive, disorders, and were fed on powdered half-skimmed cow’s milk formulae prepared at the usual 15% concentration, either alone (15 infants), or with additional cereals and infant food (7 infants).
Venous blood was taken at 11 a.m., after two feeds at 6 a.m. and 9 a.m. Room temperature was noted in each case. Plasma urea was determined by the urease method in a Beckman BUN analyser; plasma sodium, using a flame photometer; total plasma protein by the biuret method; haematocrit by microtube centrifugation. Normal values for our laboratory are: plasma urea ≤ 35 mg/100 ml; plasma sodium 135–140 mEq/l; plasma protein in infants aged less than 3 months 5–6–5 g/100 ml; haematocrit 30–45%.

Our data are summarized in the Table. Plasma urea (mean 26 mg/100 ml) lies within normal limits for all but 3 infants (40, 45, and 45 mg/100 ml). The proportion of these high urea levels is small (3/22 = 14%) and not significant, and is at variance with the findings of Davies and Saunders (75–88% above 40 mg/100 ml), and Dale et al. (mean plasma urea ≥ 50 mg/100 ml). Plasma proteins, plasma sodium, and haematocrit in our infants all fall within normal limits, in spite of a fairly high room temperature (mean 26°C) favouring increased evaporative water losses.

Thus the blood urea levels in our artificially-fed infants lie within normal limits. The high levels observed by others may therefore be attributed not to cow's milk in itself, but to some condition associated with artificial feeding, for instance the well-known tendency to prepare a too concentrated milk formulae, as shown by Taitz and Byers (1972). Infants' artificial feeding has its rules, which though simple, are often neglected and have to be constantly recalled. This is a matter of dietary education by physicians, midwives, social workers, and milk manufacturers.

TABLE

<table>
<thead>
<tr>
<th></th>
<th>(a) Bottle-fed (n=15) Artifical milk alone*</th>
<th>(b) Bottle-fed (n=7) artificial milk + solid foods*</th>
<th>Difference between (a) and (b)</th>
<th>Combined data (a+b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Mean</td>
<td>SD</td>
<td>SEM</td>
</tr>
<tr>
<td>Age (m)</td>
<td>0-5-2-75</td>
<td>1-14</td>
<td>0-7</td>
<td>0-18</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>2-8-4-4</td>
<td>3-5</td>
<td>0-5</td>
<td>0-13</td>
</tr>
<tr>
<td>Plasma urea (mg/100 ml)</td>
<td>20-45</td>
<td>25-7</td>
<td>7-8</td>
<td>—</td>
</tr>
<tr>
<td>Plasma protein (g/100 ml)</td>
<td>4-5-6-3</td>
<td>5-3</td>
<td>1-5</td>
<td>0-4</td>
</tr>
<tr>
<td>Plasma sodium (mEq/l)</td>
<td>130-139</td>
<td>135-4</td>
<td>3-2</td>
<td>0-9</td>
</tr>
<tr>
<td>Haematocrit (%)</td>
<td>28-43</td>
<td>37-9</td>
<td>8-3</td>
<td>2-2</td>
</tr>
<tr>
<td>Environmental temperature (°C)</td>
<td>20-26</td>
<td>24-5</td>
<td>1-4</td>
<td>0-35</td>
</tr>
</tbody>
</table>

* Different commercially available half-skimmed powdered milks were used at the usual 15% concentration. These milks were either conventional (15) or modified (7). No significant difference was found between the infants fed on unmodified and modified milks.

References

Three periodic diseases as causes of recurrent abdominal pain in childhood

Sir,

In an article in the *Archives* (Christensen and Mortensen, 1975), in three cited articles therein, and in a current textbook of paediatrics (Vaughan, McKay, and Nelson, 1974) psychogenic reactions, irritable colon, and other conditions are considered to be the main causes of recurrent abdominal pain in childhood. No mention is made of three uncommon, repetitive entities characterized by abdominal pain as described in 1948 (Reimann, 1963). These are periodic peritonitis, periodic oedema (hereditary angio-oedema), and periodic pancreatitis (chronic relapsing pancreatitis). All three are heritable, usually begin in infancy, childhood, or adolescence, and have episodes of the respective diseases lasting a day or more that repeat often with remarkable regularity every 1, 2, 3, or 4 weeks, or irregularly, for decades. Between episodes patients are well. Episodes may cease spontaneously for months or years, only to resume at the same or different rate.

B. MELEKIAN and J. SALET

Hôpital Bretonneau, 2, rue Carpeaux, 75018 Paris, France.