Rotavirus infections in a maternity unit

BARBARA M. TOTTERDELL, IAN L. CHRYSTIE, and J. E. BANATVALA
From the Department of Virology, St. Thomas's Hospital and Medical School, London

Rotaviruses (reovirus-like particles, duoviruses) are important causes of gastroenteritis in children as well as in the young of many animal species (Mebus et al., 1969; Woode et al., 1974; Lancet, 1975). The accumulated data from studies conducted on children admitted to hospital in many parts of the world have shown that these viruses may be detected by electron microscopy in the faecal extracts of up to 50% of children with gastroenteritis but not in age-matched controls (Davidson et al., 1975). In an outbreak of rotavirus infection among babies in a London maternity unit a technique was used for the detection of human rotaviruses by immunofluorescence (IF) in cell cultures which provides a suitable alternative to electron microscopy for establishing a diagnosis of infection by human rotaviruses.

Materials and methods

Stools were stored at −70 °C before testing. For examination by electron microscopy (EM), a 10% suspension of faeces was made in phosphate-buffered saline and the preparation centrifuged at 1500 g for 10 minutes. The supernatant fluid was then centrifuged at 300 000 g for 30 minutes and the pellet suspended in 1–2 drops of distilled water. This preparation was then negatively stained with 3% potassium phosphotungstic acid (pH 6·5) and examined at a screen magnification of × 40 000 in a Philips 200 EM.

For IF tests, a 20% faecal suspension was made in Eagle’s minimum essential medium containing 2% fetal calf serum (Flow Laboratories, Ltd.) and agitated on a Rotamixer shaker for 1–2 minutes. After standing for 15 minutes, the faecal suspension was filtered through a 450 nm millipore filter and 0·1 ml of the filtrate inoculated onto confluent pig kidney monolayers containing 65 (95·5%) specimens, 58 being positive after centrifugation at 3000 g and a further 7 after centrifugation at 10 000 g. Antigen was first detected 6 hours after inoculation of specimens, maximum levels being detected at 24 hours.

Received 4 March 1976.
Rotavirus infections in a maternity unit

quence of the development of rotavirus antigen, a faecal extract rich in virus particles was inoculated into a number of coverslip preparations of IB-RS-2 and examined for IF at varying intervals after inoculation.

Attempts to detect serotypes of enteropathogenic Esch. coli, commonly associated with enterotoxin production in the UK, Shigella and Salmonella sp., and staphylococci were made, using routine diagnostic procedures.

Whenever possible, paired sera were obtained from mothers, the first sample being collected 4 days after delivery and the second at their postnatal visit 6 weeks later. These sera were tested for rotavirus antibodies by complement fixation, antigen being prepared from a calf faecal sample rich in rotavirus particles (Kapikian et al., 1974). The complement fixed antigen was used at its optimal dilution.

Results

On 29 May 1975, faecal extracts from three 7- to 9-day-old babies with loose, offensive stools on one maternity ward were examined by EM and found to contain rotaviruses. Stools from apparently healthy infants in the same ward, two other maternity wards (one adjacent, the other two floors below), and the Newborn Special Care Unit (NSCU), were therefore examined. During the next 16 weeks, 76 of 174 (44%) 4- to 9-day-old babies in these wards, including the NSCU, were found to be excreting rotaviruses. No virus was detected in any of 34 specimens from babies 1–2 days old though it was detected in stools of 2 of 26 3-day-old babies. Rotaviruses were detected more frequently in the stools of bottle-fed than breast-fed babies (P < 0.001, Table 1).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Relation between method of feeding and rotavirus excretion in 4- to 9-day-old babies, May–July 1975</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rotavirus positive</td>
</tr>
<tr>
<td>Breast fed</td>
<td>31</td>
</tr>
<tr>
<td>Bottle fed</td>
<td>42</td>
</tr>
<tr>
<td>Total</td>
<td>73</td>
</tr>
</tbody>
</table>

χ² = 13.9, P < 0.001.

Of the 76 babies excreting rotaviruses, only 7 (8%) had diarrhoeal symptoms (i.e. passage of a dozen or more loose and often offensive stools in 24 hours) and of these 5 were bottle fed. Only one baby required treatment (administration of clear fluids by mouth for 12 hours). Though many of the newborn babies, particularly those who were given breast milk, had 2–3 loose stools per day, only 8 of 21 (38%) with such symptoms excreted rotaviruses. In contrast, in those bottle-fed babies who produced occasional loose stools, rotaviruses were detected in 20 out of 23 (87%). There was no difference in the pattern of weight gain between rotavirus-positive or -negative babies, nor in the age at which they were discharged from hospital.

No bacterial pathogens were isolated from the stools of 45 rotavirus-positive and 36 rotavirus-negative babies.

EM studies showed that many of these babies excreted very large quantities of virus (e.g. up to 10¹⁰ virus particles per ml faecal extract) and, since rotaviruses are stable at ambient temperatures (Woode, 1976) and no precautions were taken to limit spread of infection, we were surprised that the epidemic ended abruptly during the second week in August (Fig.).

A surveillance programme was instituted in which the stools of 5-day-old babies in one maternity ward were examined monthly. During the second and third weeks in November, rotaviruses were detected in 3 children aged between 6 months and 2 years in the general children’s ward, this being on the same floor, but at a distance of about 100 metres from one of the maternity wards. During the first week in December, the stools of an asymptomatic 3-day-old baby were found to contain rotaviruses. However, weekly examination of the stools of 5-day-old babies in the maternity unit during the next 4 weeks showed, in contrast with findings during the summer, that infection was not transmitted to any other newborn infants.

Sixty-eight of 76 faecal specimens in which virus had been detected by EM were inoculated into IB-RS-2 cell cultures, and these were then examined by IF. Rotavirus antigen was detected in 58 of
the 68 (83%) specimens after centrifugation at 3000 g. However, 7 of the 10 specimens in which no rotavirus antigen could be detected were positive when inoculated by centrifugation at 10 000 g. Very few virus particles were detected in these specimens by EM. It was therefore possible to detect rotavirus antigen by IF in 65 out of 68 (95%) of specimens which were positive by EM (Table II).

TABLE II
Comparison of electron microscopy and IF for detection of rotaviruses

<table>
<thead>
<tr>
<th>Total positive</th>
<th>EM positive</th>
<th>IF positive 3000 g</th>
<th>IF positive 10 000 g</th>
<th>IF negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>68</td>
<td>58</td>
<td>7*</td>
<td>3</td>
</tr>
</tbody>
</table>

*Only the 10 specimens negative at 3000 g were tested at 10 000 g.
EM, electron microscope; IF, immunofluorescence.

None of 42 faecal specimens negative by EM when tested by IF gave positive results. 10 specimens tested using bovine reagents provided identical results. Rotavirus antigen became detectable 6 hours after inoculation, the maximum number of antigen-positive cells being detected 24 hours after inoculation (Table III). Fluorescence was intra-

TABLE III
Development of rotavirus antigen in IB-RS-2 cell cultures

<table>
<thead>
<tr>
<th>Time after inoculation (h)</th>
<th>1</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>24</th>
<th>48</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. fluorescent cells per ×80 field</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>15</td>
<td>98</td>
<td>37</td>
<td>16</td>
</tr>
</tbody>
</table>

cytoplasmic and particulate and closely resembled the pattern of fluorescence occurring in calf-rotavirus infected cultures (Bridger and Woode, 1975).

Serological studies showed that rotavirus excretion did not appear to be related to maternal CF antibody, since there was no significant difference in the levels of antibody of mothers of rotavirus positive and negative infants (Table IV).

TABLE IV
Rotavirus of antibodies in mothers of rotavirus CF-positive and CF-negative infants

<table>
<thead>
<tr>
<th>Infants rotavirus +ve</th>
<th>Serum 1</th>
<th>Serum 2</th>
<th>No. seroconverted</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. tested</td>
<td>No. <4</td>
<td>GMT</td>
<td>No. tested</td>
</tr>
<tr>
<td>34</td>
<td>5</td>
<td>7·4</td>
<td>42</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>9·2</td>
<td>29</td>
</tr>
</tbody>
</table>

*Numbers of paired sera available.
CF, complement fixed.
suggesting that calves are infected from the adult population (Woode, 1976). Alternatively, infection may have been transmitted to the maternity unit by hospital staff by direct contact; the reintroduction of infection into the maternity ward after rotavirus infection in the general children’s ward suggests this. As the infection was mild, no special precautions were taken and, since rotaviruses are stable at ambient temperatures and aerosols containing large numbers of virus particles were almost certainly produced when nappies were changed, it is difficult to explain why the epidemic terminated abruptly in early August. The only change in environmental conditions we know of was a rise of approximately 8 °C in the daily maximum temperature recorded by the London Weather Centre during the last week in July and first week in August. The abrupt end of rotavirus outbreaks among calves has also been observed in the field by veterinary workers (C. A. Mebus, personal communication, 1976).

Rotavirus infections occurred less frequently among breast-fed babies and this may have been due to either transmission of specific antibody in breast milk or perhaps a recently demonstrated antiviral factor, distinct from antibody or interferon, found in breast milk (Tyrrell, 1976). Though there was no apparent difference in the antibody levels between the mothers of babies who excreted rotavirus and those who did not, maternal antibody may have in some way been responsible for infection in bottle-fed newborn babies also being mild or asymptomatic. Complement fixed antibodies are usually time-dependent and our finding that most adults have these antibodies suggests that immunity may be maintained by frequent exposure to infection. It is perhaps surprising that passively acquired transplacental serum antibody rather than local gut antibody may protect against rotavirus infection in newborn babies. However, circulating antibodies can protect the gut against such infections as cholera (Pierce, 1976), and the respiratory tract against influenza (Edmonson et al., 1971).

Alternatively, the high proportion of mild or asymptomatic infections recorded in this study may have resulted from infection by avirulent rotavirus strains and recent studies suggest that both pig and mouse rotaviruses vary in their virulence (Woode, 1976; Flewett, 1976).

Human rotaviruses may be detected in vitro in human embryonic organ cultures (Wyatt et al., 1974), as well as by a technique in which inoculated human embryonic gut cultures are layered with further human embryonic gut cells and tested for rotavirus antigen by immunofluorescence, antigen being detected some 18 days after inoculation (Purdham et al., 1975). Recently, Wyatt and his colleagues (1976) adapted a rotavirus strain to replicate in human embryonic kidney cell cultures, but it is unlikely that this system will be of diagnostic value. We feel that our technique, which detects rotavirus antigen within 24 hours of inoculating specimens, compares favourably in sensitivity with EM and may provide a suitable alternative for those laboratories which do not have access to an electron microscope. Using this technique we have also shown human rotavirus antigen in both primary human and bovine embryonic kidney cell cultures, but these cultures are considerably less sensitive.

We are grateful to Mr. Gerald Woode, Institute of Research on Animal Diseases, Compton, Berks., for advice and reagents; to the medical officers and nursing staff of the maternity wards and NSCU at St. Thomas’s Hospital for co-operation; to Mr. T. K. Cowell, Department of Medical Electronics, and Mr. J. Bertrand, Department of Virology, St. Thomas’s Hospital, for technical advice; and to Professor I. Phillips, Department of Microbiology, St. Thomas’s Hospital, for bacteriological studies.

References

Correspondence to Prof. J. E. Banatvala, Department of Virology, St. Thomas's Hospital and Medical School, London SE1 7EH.