Correspondence

901

causes of child poisoning and concentrated on the process by which true poisonings are distinguished from poisoning scares in the home and in casualty. We do not know whether the factors causing poisoning scares are similar to the factors causing poisoning.

Dr. Sibert was right to draw attention to the need to study stomach contents and blood levels; these need to be related to parental evidence so that we can improve our discrimination. We have no wish to imply that parents are overanxious in seeking medical help. Nevertheless, though the occasional parent is unable even after questioning to provide reliable information, and this should be recognized by the Casualty Officer, many mothers can reply to appropriate questions by the Medical Officer.

The child who has taken a dangerous dose of digoxin differs from the child who has swallowed a few tablets of penicillin; the one child may die without treatment, the other will certainly survive. We disagree with the view that the aim of treatment for a child brought to hospital is to induce vomiting, however effective or humane the methods used, if this is not a necessary procedure in the interest of the child’s health.

As we recorded in our paper, in only 22% of cases did the child develop symptoms, and in a further 13% was there objective evidence that the child had swallowed a toxic substance. We offered no figures on the risks to the child’s life. However, only one child in this study suffered permanent damage—from swallowing caustic soda.

In the light of Dr. Sibert’s evidence on the relation of stress to suspected poisoning, we must support again the introduction of childproof containers which should make the evidence of true poisoning even easier to determine.

J. W. DALE
South East Thames
Regional Health Authority,
Ralph House,
46/48 Wellesley Road,
Croydon CR9 3QA.

Albumin content of meconium from preterm infants

Sir,

We were interested in the article by Griffiths, Bull, and Dykes (Archives, 51, 321, 1976) concerning the effect of gestational age on albumin content of meconium. In a similar study performed on 183 newborn infants of less than 38 weeks’ gestational age, a BM-Test Meconium as described by Stephan et al. (1975) was performed. According to the latter authors, the test is positive if the albumin concentration is at least 20 mg/g dry weight of meconium. In our series the incidence of positive BM-tests on the first meconium sample is 15.3% and in agreement with the high incidence (8%) found by Griffiths et al. in infants of less than 37 weeks’ gestational age. Taking into account both gestational age and weight (Lubchenco, Hansman, and Boyd, 1966), the Table shows that the incidence of raised meconium albumin levels is particularly high (36.4%) among small-for-dates infants with birthweight below the 10th centile for gestational age (Lubchenco et al., 1966).

In a previous study (Eggermont, 1966), we were able to show that the decrease of protein content in meconium according to fetal age is not due to dilution by increased accumulation of mucopolysaccharides but to the proteolytic activity which, however, is not entirely due to pancreatic proteases. These observations should be kept in mind when meconium albumin tests as a screening technique for cystic fibrosis are performed in preterm infants.

TABLE

Results of BM-Tests Meconium for albumin in the first meconium samples of 183 preterm infants of <38 weeks’ gestational age and consecutively admitted to the newborn nursery

<table>
<thead>
<tr>
<th>Meconium Test No.</th>
<th>Meconium Test No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All infants</td>
<td>183</td>
</tr>
<tr>
<td>Weight groups</td>
<td></td>
</tr>
<tr>
<td>>P_{10}</td>
<td>7</td>
</tr>
<tr>
<td>P_{10}-P_{10}</td>
<td>143</td>
</tr>
<tr>
<td>>P_{10}</td>
<td>33</td>
</tr>
</tbody>
</table>

E. EGGERMONT
Kindergeneeskunde,
University of Leuven,
Gasthuisberg Ziekenhuis,
Leuven 3000, Belgium.

REFERENCES

Dr. A. D. Griffiths comments:

Thank you for allowing us to reply to the letter from Professor Eggermont. His findings are in agreement with ours, confirming that preterm infants have raised levels of albumin in their meconium. This can lead to an unacceptable number of false-positive results when screening for cystic fibrosis using a method based on the albumin content of meconium. It may be possible, however, to increase the specificity of the screening procedure by subjecting those meconium samples with raised protein levels to further tests such as described by Ryley et al. (1975) and Antonowicz, Ishida, and Shwachman (1976).